摘要: | 本研究使用中孔SiO2製備平均孔徑為3.13 nm的球形分子篩 (Santa Barbara Amorphous-15, SBA-15) 做為薄膜之基質,並添加含有聚乙烯醇 (polyvinyl alcohol, PVA) 及甘胺酸??? (piperazine glycinate, PG) 的溶液,以製備混合基質薄膜 (mixed matrix membranes, MMMs) ,並針對製備之薄膜進行材料特性及氣體分離試驗分析。透過FT-IR 光譜測試,在波數為 1,144 cm-1 時,發現縮醛形成的交聯結構;以及在波數為 1,060 cm-1 時,觀察到Si-O-Si 伸縮振動及彎曲振動的特徵峰,並在 1,610 cm-1 處偵測到N-H 官能基的峰值。藉由增加 SBA-15 的濃度,可以提升薄膜的機械強度及熱穩定性,以及擴大非晶形區域,且因基質與CO2具有高相容性,能提升對CO2的穿透率及選擇性。隨著SBA-15 載量的增加,可使其在薄膜上分布更加均勻,然而,顆粒聚集現象亦逐漸顯著發生。氣體分離之試驗結果顯示,含有 15 wt.% SBA-15 的薄膜 PVA/PG/SBA-15,可達到711.6 Barrer的最佳 CO2 穿透率及150.75的CO2/N2 選擇性, 明顯優於2008 年 Robeson之研究成果。由於 MMMs 中PG的胺基存在, CO2 得依溶滲機制進行分離。整體而言,本研究製備之MMMs 具有優異的氣體分離效果,特別是應用於分離 CO2、淨化氣體及控制 CO2 排放等方面,未來極具工業應用分離氣體之發展潛力。;This study investigates the addition of spherical mesoporous silica SiO2 Santa Barbara Amorphous-15 (SBA-15), with an average pore size of 3.13 nm, into a solution containing polyvinyl alcohol (PVA) and piperazine glycinate (PG). Characteristic investigations and gas separation tests were conducted on the MMMs. The FTIR spectra confirmed the acetal structures formed by cross-linking at a wavenumber of 1144 cm-1 and the Si-O-Si stretching and bending bond at a wavenumber of 1060 cm-1. Moreover, the peak detected at 1610 cm-1 suggested the presence of the N-H group in the PVA/PG/SBA-15 membrane. Increasing the concentration of SBA-15 resulted in the enhancement of mechanical and thermal performances of the membrane, as well as an increase in the amorphous region. The rise in CO2 permeability and selectivity resulted from the high compatibility and addition of mobile carriers. As SBA-15 loading increased, the dispersion of the filler improved, but there was also a noticeable increase in particle agglomeration. The findings showed that the PVA/PG membrane, with a 15 wt.% of SBA-15 loading PVA/PG/SBA-15, had both the optimal CO2 permeability of 711.6 Barrer and CO2/N2 selectivity of 150.75. These values were placed beyond 2008 Robeson’s upper bound. The solution-diffusion mechanism dominates CO2 separation due to the presence of amine groups from PG in the MMMs. The excellent gas separation performance of the prepared MMMs has a good potential for industrial gas separation, particularly in separating CO2, purifying gases, and controlling CO2 emissions. |