摘要(英) |
Gold can not only an important hedging tool to fight against global recession,the depreciation in U.S. dollar and inflation but also the best hedge commodity .Gold is able to maintain its liquidity even at times of crisis situations like high global inflation or political turbulence.Holding gold is to build a diversified portfolio to reduce risk. This research used a variety of time-series methodologies to discuss the interactive relationship between the price of gold passbook from bank of Taiwan,international price of gold, NT dollar exchange rate,oil price,silver price and the price of Taiwan weighted stock index from January 2,2006 to 2010 April 30. The empirical results of this study are summarized as follows:
1.All variables by the ADF unit root test have unit root character.By way of first-order difference in the subsequent variables are significant at the 1% level, rejected the existence of time series with single root of nothing suppose,that the sequences are all stationary state and integrated-level meeting with the same pattern I(1).
2.The empirical results of Johansen cointegration show that the cointegration of the price of gold passbook from bank of Taiwan, international price of gold, NT dollar exchange rate,oil price,silver price and the price of Taiwan weighted stock index is existing,which implies these variables have long-term stability equilibrium relationship.
3.In the short term,in addition to the price of gold passbook from bank of Taiwan and international price of gold to fall behind the circulation period are most significant,NT dollar exchange rate and oil price are also significantly affected.
4.All variables to the impact of price shocks on the gold passbook from bank of Taiwan,the international price of gold,oil price and silver price caused the greatest influence.Impulse response is long-term pattern and long-term cumulative effect is positive.
5.The empirical results of the variance decomposition, we can see changes in the first phase to the price of gold passbook from bank of Taiwan,which explains the proportion of spontaneous disturbance of up to 100%,although slightly lower after, but remained over 96.46%.The price of gold passbook from bank of Taiwan showed spontaneous high.In the long run,international price of gold,silver prices,oil prices,NT dollar exchange rate have high explanation to gold passbook from bank of Taiwan.
We can conclude that the shock resulted from international price of gold,silver price,oil price and NT dollar exchange rate are necessary to note when investing in gold passbook from bank of Taiwan.
|
參考文獻 |
一、中文部分:
1.陳銘琦(1989),「黃金價格時間數列模型」,淡江大學管理科學研究所碩士論文。
2.王麗梅(1992),「總體經濟因素對股票報酬之影響—台灣上市公司之實證研究」,國立交通大學管理科學研究所碩士論文。
3.陳淑玲(2005),「石油價格與黃金價格衝擊對台灣加權股價指數期、現貨的影響」,國立台北大學合作經濟系研究所碩士論文。
4.謝鎮州(2005),「股票、黃金與原油價格互動關係之研究—以台灣為例」,逢甲大學經濟研究所碩士論文。
5.余佳昇(2006),「油價、金價及英鎊兌美元匯率報酬之共移性與外溢效果」,中原大學國際貿易研究所碩士論文。
6.李映潔(2006),「影響黃金價格因素其穩定性之研究」,國立成功大學國際企業研究所碩士論文。
7.楊瑩瑛(2006),「黃金價格:全球要求報酬理論實證研究」,雲林科技大學財務金融碩士班碩士論文。
8.陳旭昇(2007),「時間序列分析,總體經濟與財務金融之應用」,東華書局,十一月初版。
9.王允俊(2007),「匯率、金價與油價關係之研究」,高雄應用科技大學金融資訊研究所碩士論文。
10.闕彥菱(2008),「利率、美元、黃金價格及原油價格之動態傳遞效果」,高雄第一科技大學金融營運系碩士班碩士論文。
11.楊奕農(2008),「時間序列分析,經濟與財務上之應用」,雙葉書廊有限公司,三月初版六刷。
12.鍾惠民、周賓凰、孫而音(2009) ,「財務計量:Eviews的應用」,新陸書局股份有限公司,98年9月初版。
13.世界黃金協會(World Gold Council),http://www.gold.org
14.台灣銀行貴金屬部。
二、英文部分:
1.Capie, F., T. C. Mills, and G. Wood (2005),“Gold as a hedge against the dollar,”Journal of International Financial Markets, Institutions and Money. 4, 343–352.
2.Dickey, D. A., and W. A. Fuller (1979),“Distribution of the estimators for autoregressive time series with a unit root,”Journal of American Statistical Association 74,427-431.
3.Dickey, D. A., and W. A. Fuller (1981),“Likelihood ratio statistics for autoregressive time series with a unit root,”Econometrica 49,1057-1072.
4.Elliott, G., T. J. Rothenberg, and J. H. Stock (1996),“Efficient Test for an Autoregressive Unit Root,” Econometrica 64, 813-836.
5.Engle, R. F., and C. W. J. Granger (1987),“Co-integration and error correction: representation,estimation,and testing,”Econometrica 55, 251-276.
6.Granger, C. W. J., and P. Newbold (1974),“Spurious regressions in econometrics,”Journal of Econometrics 2,111-120.
7.Granger, C. W. J. (1988),“Some Recent Developments in a Concept of Causality,”Journal of Econometrics 39,199-211.
8.Graham, S. (2001),“The price of gold and stock price indices for the United States,” World Gold Council.
9.Hammoudeh, S. and Y. Yuan. (2008),“Metal volatility in presence of oil and interest rate shocks,”Energy Economics 30,606–620.
10.Johansen, S. (1988),“Statistical Analysis of Cointegration Vectors,”Journal of Econometrics Dynamics and Control 12,231-254.
11.Johansen, S., and K. Juselius (1990),“Maximun likelihood estimation and Inference on cointegration with Applications to the Demand for money,”Oxford Bulltin of Economics and Statistics 52,169-210.
12.Levin, E. J., A. Montagnoli, and R. E. Wright (2006),“Short-run and long-run determinants of the price of gold,”Project Report. World Gold Council.
13.Newey, W. K., and K. D. West (1987),“A simple,Positive semi-definite heteroskedasticity and autocorrelation consistent convariance matrix,”Econometrica 55, 703-708.
14.Nikos, K. (2006),“Commodity Prices and the Influence of the US Dollar,” World Gold Council January 2006.
15.Saroja, S. and E. A. Selvanathan. (1999),“The effect of the price of gold on its production:a time-series analysis,” Resources Policy 25, 265–275.
16.Tran, K. and M. Starr (2008),“Determinants of the Physical Demand for Gold:Evidence from Panel Data,” The World Economy(2008),416-436.
17.Wooldridge, J. M. (1989),“A computationally simple heteroskedasticity and serial correlation-robust standard error for the linear regression model,”Economics Letters 31,239-243.
|