參考文獻 |
[1]. S. Tong and D. Koller, “Support vector machine active learning with applications to text classification”, Proceedings of the 17th International Conference on Machine Learning, pp. 401-412, 2000.
[2]. R.C. Chen and C.H. Hsieh, “Web page classification based on a support vector machine using a weighted vote schema”, Expert Systems with Applications 31 (2), 2006.
[3]. L. Cai and T. Hofmann, “Hierarchical document categorization with support vector machines,” ACM 13th Conference on Information and Knowledge Management, pp. 1-10, 2004.
[4]. Cheng Hua Li and Soon Choel Park, “An efficient document classification model using an improved back propagation neural network and singular value decomposition”, Expert systems with applications, 36, pp. 3208-3215, 2009.
[5]. L.Manevitz and M.Yousef, “One-class document classification via neural networks”, Neuro computing, pp. 1466-1481, 2007.
[6]. R. Anand, K. G. Mehrotta, C. K. Mohan, and S. Ranka, “An improved algorithm for neural network classification of imbalanced training sets”, IEEE Trans. Neural Networks, vol. 4, pp. 962-969, 1993.
[7]. Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu, ”Transferring naive bayes classifiers fort ext classification”, Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 540-545, 2007.
[8]. Sang-Bum Kim, Kyoung-Soo Han, Hae-Chang Rim, and Sung Hyon Myaeng, “Some effective techniques for naive Bayes text classification”, IEEE Transactions on Knowledge and Data Engineering, 18(11):1457-1466, 2006.
[9]. A. Juan and E. Vidal, “On the use of Bernoulli mixture models for text classification”, Pattern Recognition, 35(12): 2705-2710, 2002.
[10]. K. Nigam, A.K. McCallum, S. Thrun, and T.M. Mitchell, “Text Classification from Labeled and Unlabeled Documents Using EM”, Machine Learning, vol. 39, nos. 2/3, pp. 103-134, 2000.
[11]. K.M. Schneider, “A New Feature Selection Score for Multinomial Naive Bayes Text Classification Based on KL-Divergence”, 42nd Meeting of the Association for Computational Linguistics, pp. 186-189, 2004.
[12]. D. Isa, L. H. Lee, V. P. Kallimani, and R. RajKumar, “Text Document Preprocessing with the Bayes Formula for Classification Using the Support Vector Machine”, IEEE Transactions on Knowledge and Data Engineering, vol. 20, 2008.
[13]. L. Denoyer and P. Gallinari, “Bayesian Network Model For Semi-Structured Document Classification”, In Information Processing and Management, Volume 40, Issue 5, pp. 807-827, 2004.
[14]. B. C. M. Fung, K. Wang, and M. Ester, “Hierarchical Document Clustering Using Frequent Itemsets”, Proc. of SIAM Int’l Conf. on Data Mining, 2003
[15]. B Yang, JT Sun, T Wang, and Z Chen, “Effective multi-label active learning for text classification”, In KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 917-926, 2009.
[16]. J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor, “Kernel-Based Learning of Hierarchical Multilabel Classification Models”, The Journal of Machine Learning Research, pp. 1601-1626, 2006.
[17]. C. Vens, J. Struyf, L. Schietgat, S. Dzeroski, and H. Blockeel, “Decision trees for hierarchical multi-label classification”, Machine Learning, vol. 73, pp. 185-214, 2008.
[18]. RA Calvo, “Classifying Financial News With Neural Networks”, Proc. of the 6th Australasian Document Computing Symposium, 2001.
[19]. W Zheng, E Milios, and C Watters, “Filtering for medical news items using a machine learning approach”, AMIA Annual Symposium Proceedings, pp. 949-53, 2002.
[20]. G. Forman, “Choose your words carefully: An Empirical Study of Feature Selection Metrics for Text Classification”, Proceedings of the 6th Eur. Conf. on Principles Data Mining and Knowledge Discovery (PKDD), vol. 2431, pp. 150-162, 2002.
[21]. Y. Yang and J.O. Pedersen, “A Comparative Study on Feature Selection in Text Categorization”, Proc. of the 14th International Conference on Machine Learning ICML97, pp. 412-420, 1997.
[22]. M. Ikonomakis, S. Kotsiantis, and V. Tampakas, “Text Classification Using Machine Learning Techniques”, WSEAS Transactions on Computers, Issue 8, Volume 4, pp. 966-974, 2005.
[23]. S. Tan, “Neighbor-weighted k-nearest neighbor for unbalanced text corpus”, Expert Syst. Appl., vol. 28, pp. 667-671, 2005.
[24]. E.H. Han, G. Karypis, and V. Kumar, “Text categorization using weight adjusted k-nearest neighbor classification”, In Proceeding of the fifth pacific-asia conference on advances in knowledge discovery and data mining (PAKDD01), pp. 53-65, 2001.
[25]. C. Cortes and V. Vapnik, “Support-vector networks”, Machine Learning, pp. 273-297, 1995.
[26]. M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization by a colony of cooperating agents”, IEEE Trans. Systems Man Cybernet, pp. 29-41, 1996.
[27]. T. Joachims, “Text categorization with support vector machines”, European Conference on Machine Learning (ECML), 1998.
[28]. S. Chakrabarti, S. Roy, and M. V. Soundalgekar, “Fast and accurate text classification via multiple linear discriminant projections”, The VLDB Journal, pp. 170-185, 2003.
[29]. L.Manevitz and M.Yousef, “One-class document classification via neural networks”, Neural computing, pp.1466-1481, 2007.
[30]. S.R. Safavian and D. Landgrebe, “A Survey of Decision Tree Classifier Methodology”, IEEE Trans. Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 660-674, 1991.
[31]. D. Koller and M. Sahami, “Hierarchically classifying documents using very few words”, Proc. of the 14th Int’l Conf. on Machine Learning, pp. 170-178, 1997.
[32]. N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Incremental algorithms for hierarchical classification”, J. Mach. Learn. Res., pp. 31-54, 2006.
[33]. R. Prabowo, M. Jackson, P. Burden, and H. Knoell, “Ontology-Based Automatic Classification for the WEB Pages: Design, Implementation an Evaluation”, Proc. of 3rd International Conference, pp. 182-191, 2002.
[34]. M.H. Song, S.Y. Lim, D.J. Kang, and S.J. Lee, “Automatic Classification of Web Pages based on the Concept of Domain Ontology”, Proceedings of the 12th Asia-Pacific Software Engineering Conference(APSEC’05), 2005.
[35]. M. Grobelnik and D. Mladenik, “Simple classification into large topic ontology of Web documents”, In Proceedings: 27th International Conference on Information Technology Interfaces, pp. 20-24, 2005.
[36]. C. Haruechaiyasak, M.-L. Shyu, S.-C. Chen, and X. Li, “Web document classification based on fuzzy association”, in: Proc. of the 26th IEEE Int. Computer Software and Applications Conf., pp. 487-492, 2002.
[37]. H. Ishibuchi, T. Nakashima, and T. Murata, “A fuzzy classifier system that generates fuzzy if-then rules for pattern classification problem”, l'cuc. 211d IEEE hit. Conf. on Evolutionary Computation, pp. 759-764, 1995.
[38]. R. Kondadadi and R. Kozma, “A modified fuzzy ART for soft document clustering”, Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN '02, vol. 3, pp. 2545- 2549, 2002.
[39]. T.Y. Wang and H.M. Chiang, “Fuzzy support vector machine for multi-class text categorization”, Information Processing and Management, 43(4), pp. 914-929, 2007.
[40]. D. Merkl, “Text classification with self-organizing maps: Some lessons learned”, Neural computing, 21, pp. 61-77, 1998.
[41]. D.G Roussinov and H. Chen, “A scalable self-organizing map algorithm for textual classification: a neural network approach to thesaurus generation”, The Journal for the Integrated Study of Artificial Intelligence, Cognitive Science and Applied Epistemology, pp. 81-111, 1998.
[42]. Kenji Hatano, Ryouichi Sano, Yiwei Duan, and Katsumi Tanaka, “An interactive classification of web documents by self-organizing maps and search engines”, Proceedings of the Sixth International Conference on Database Systems for Advanced Applications (DASFAA), pp. 35-42, 1999.
[43]. R. Jones, A. McCallum, K. Nigam, and E. Riloff, “Bootstrapping for text learning tasks”, In IJCAI-99 Workshop on Text Mining: Foundations, Techniques and Applications, 1999.
[44]. B. Liu, X. Li, W. S. Lee, and P. S. Yu, “Text classifcation by labeling words”, In AAAI-04, 2004.
[45]. Y. Bao and N. Ishii, “Combining multiple k-Nearest Neighbor Classifiers for Text Classification by Reducts”, Proc.5th International Conference on Discovery Science, pp. 361-368, 2002.
[46]. H. Gunes Kayacik, A.N. Zincir-Heywood, and M.I. Heywood, “A hierarchal SOM-based intrusion detection system”, Engineering Applications of Artificial Intelligence, vol. 20, no. 4, pp. 439-451, 2007.
[47]. M. Dittenbach, A. Rauber, and D. Merkl, “Uncovering hierarchical structure in data using the growing hierarchical self-organizing map”, Neural computing, 48, pp. 199-216, 2002.
[48]. B. Fritzke, “Growing grid – a self-organizing network with constant neighborhood range and adaptation strength”, Neural Processing Letters, 2(5), pp. 913, 1995.
[49]. J. S. Rodrigues and L. B Almeida, “Improving the learning speed in topological maps of patterns”, Proceedings of INNC, pp. 813-816, 1990.
[50]. C. L. Castro, M. A. Carvalho, and A. P. Braga, “An Improved Algorithm for SVMs Classification of Imbalanced Data Sets”, Engineering Applications of Neural Networks, pp. 108-118, 2009.
[51]. C. E. Shannon and W. Weaver, “The Mathemtiatical Theory of Communication”, Urbana, University of Illinois Press, 1949.
[52]. R. B. Calinski and J. Harabasz, “A dendrite method for cluster analysis”, Communications in Statistics 3, pp. 1-27, 1974.
[53]. Van Rijsbergen and C. J., “Information Retrieval (second edition)”, Butterworths, London, 1979.
[54]. I. Biskri and S. Delisle, “Text Classification and Multilinguism: Getting at Words via Ngrams of Characters”, 6th World Multiconference on Systemics, pp. 110-115, 2002.
[55]. H. H. Chen and C. J. Lin, “A multilingual news summarizer”, Proceedings of 18th International Conference on Computational Linguistics, pp. 159-165, 2000.
[56]. D. K. Evans and J. L. Klavans, “A Platform for Multilingual News Summarization”, Technical Report, Department of Computer Science, Columbia University, 2003.
[57]. B. Pouliquen, R. Steinberger, C. Ignat, E. Käsper, and I. Temnikova, “Multilingual and cross-lingual news topic tracking”, Proceedings of the 20th International Conference on Computational Linguistics, Geneva, Switzerland, 2004.
[58]. C.P. Wei, C.C. Yang, and C. M. Lin, “A Latent Semantic Indexing-based approach to multilingual document clustering”, Decision Support Systems, 45(3): pp. 606-620, 2008.
[59]. B. C. M. Fung, K. Wang, and M. Ester, “Hierarchical document clustering using frequent itemsets”, Proc. of the SIAM International Conference on Data Mining, 2003.
[60]. D. Barbar, C. Domeniconi, and N. Kang, “Classifying Documents Without Labels”, Proceedings of the Fourth SIAM International Conference on Data Mining, 2004.
[61]. Y. Li, S. M. Chung, and J. D. Holt, “Text document clustering based on frequent word meaning sequences”, Data and Knowledge Engineering, 64, pp. 381-404, 2008.
[62]. F. Hayes-Roth, D. Waterman, and D. Lenat, “Building Expert Systems”, New York: Addison-Wesley, 1983.
[63]. G. J. Klir and B. Yuan, “Fuzzy Sets and Fuzzy Logic: Theory and Applications”, Prentice Hall, New Jersey, 1995.
[64]. D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley, Reading, MA, 1989.
[65]. C. Peterson and B. Södeberg, “Artificial Neural Networks”, Modern heuristic techniques for combinatorial problems, Advanced Topics in Computer Science, Oxford Scientific Publications, pp. 197-242, 1993.
[66]. J. Kennedy and R. Eberhart, “Particle swarm optimization”, Proc. IEEE International Conf. on Neural Networks, 1995.
[67]. A. Hotho, A. Nurnberger, and G. Paab, ”A Brief Survey of Text Mining”, GLDV-Journal for Computational Linguistics and Language Technology, 20(2): pp. 19-62, 2005.
[68]. G. Salton, C. Yang, and A. Wong, “A vector space model for automatic indexing”, Communications of the ACM, 18(11), pp. 613-620, 1975.
[69]. R. E. Fan, P. H. Chen, and C. J. Lin, “Working set selection using the second order information for training SVM”, Journal of Machine Learning Research 6, pp. 1889-1918, 2005.
[70]. Chih-Jen Lin's Home Page. From: http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html.
|