博碩士論文 976201022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:18.117.78.87
姓名 陳登舜(Deng-shun Chen)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 納莉颱風(2001)之水收支分析
(The Water Budget of Typhoon Nari (2001))
相關論文
★ 地形降水對於環境條件與地形特性之敏感度測試:2維理想地形模擬研究★ 桃園大圳灌區降雨量之研究分析
★ 颱風事件下之集水區逕流模擬★ 台灣地區降水型態分類之研究:層狀降水與對流降水型態
★ 地形降水對於環境條件與地形特性之敏感度測試:3維理想地形模擬研究★ 2005年台灣地區季節性降雨之特徵及颱風事件之逕流模擬
★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化★ 雷達推估降雨於石門水庫霞雲集水區之流量模擬研究
★ WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究★ 懸浮微粒數量濃度對梅雨鋒面降水影響之敏感度研究
★ 台灣地區極端降雨颱風之環境特徵合成分析★ 納莉颱風(2001)之位渦收支分析
★ 西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較★ 西北太平洋熱帶氣旋生成之多尺度分析
★ 颮線與山脈地形的交互作用:理想模擬研究★ 雲凝結核濃度對於納莉(2001)颱風於海洋環境之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雖然觀測或模式上有很多關於熱帶氣旋的研究,颱風與地形間的交互作用和雲水與降水收支的瞭解仍然不足。本研究使用Yang et al.(2008)利用PUS-NACR MM5模式模擬納莉颱風(2001)之模式輸出(此模擬提供時間及空間上高解析度之資料),藉由水收支(Water Budget)診斷分析方法來比較納莉颱風在海上與登陸臺灣期間之水收支分佈。本研究參考Braun(2006)之水收支方法,所有的水收支項皆由模式直接輸出。另外吾人將颱風依照結構的差異,分為兩個不同的區域,內核區域(半徑0至50公里)與外部螺旋雨帶(半徑50至150公里)。
模擬之颱風結構於登陸前後有明顯差異,颱風登陸前(在海上)呈現較軸對稱的結構,在颱風眼牆內的中高對流層有較大的凝結加熱分佈;颱風登陸後由於受到臺灣複雜地形的影響,破壞了颱風的軸對稱性結構,而呈現非軸對稱的結構,最大凝結加熱率分佈在颱風眼牆內的中低對流層,並且眼牆內一小時平均最大凝結加熱率增加了一倍。
由水收支的結果來看,水蒸氣由邊界層徑向入流傳送到眼牆內部大約相當於總凝結的23.5%;眼牆內邊界層與垂直混合大約只有相當總於凝結的1.3%,所以內核區域邊界層提供的水氣相較於邊界層內流輸入的水氣是很小的一部分,此結果與Braun (2006)所發現的結果一致。登陸後地形增強颱風次環流,使得低層水氣通量輻合增加,在雲水與降水收支結果中,台灣地形增強上對流層外流,傳送較多的雲水與軟雹至外部螺旋雨帶區域,造成9月18日嘉南地區24小時累積降水高達522.5公厘。
另外,再進一步計算降水效率,其定義是將體積積分後的降水(雨水、軟雹、雪)項除以體積積分後的總凝結(凝結加上凝華)項,比較颱風登陸前與登陸後,降水效率從登陸前的62%增加到70%,與模擬之地面降水在登陸後增加的結果一致。此結果是由於台灣地形的影響增強颱風的次環流,增加水氣通量向內傳送,亦使得降水過程的循環率(cycling rate)加快。
摘要(英) Although there have been many observational and modeling studies of tropical cyclones, understanding of the budgets of clouds and precipitation and the interaction between typhoon and terrain are still limited. In this study, the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (PSU-UCAR) Mesoscale Model (MM5) is used to simulate Typhoon Nari, and high-resolution (2-km horizontal grid size and 2-min data interval) model outputs are used to examine water budgets, then compared between typhoon on the ocean and in land . All budget terms are derived directly from the model. The typhoon circulation is separated by two distinct components, the inner core (R=0-50 km) and outer rainband (R=50-150 km) region, respectively.
The typhoon structure has significant differences before and after landfall. Before landfall, the condensation latent heating is distributed at mid-to-high levels within typhoon eyewall; after landfall, the typhoon structure is more asymmetric and has evident titling eyewall induced by Taiwan terrain. The condensational heating rate is distributed at low-to-mid levels. The hourly-averaged condensational warming within the eyewall is one time increased and is peaked at lower altitude, compared to those over ocean.
In the budget result, when the typhoon over the ocean, the inward-to-eyewall horizontal vapor transport within PBL is about 23.5% of total condensation and the PBL source term is only about 1.3% of total condensation. The ocean source of water vapor in the inner core region is a small portion of horizontal transport, consistent with previous finding. After landfall, the Taiwan terrain effect enhanced typhoon secondary circulation. Therefore, it induced strong water vapor convergence and much mass and moist is carried into the outer spiral rainband region. In the cloud and precipitation budget, the ice and guraple transport outward to outer spiral rainband region is increased by terrain which induced Chiyi area 24-h accumulated rainfall exceed to 522.5 mm.
Further, we calculated cloud microphysics precipitation efficiency (CMPE) which is defined as the volume-integral precipitation divided by the volume-integral condensation and deposition, and large scale precipitation efficiency (LSPE) which is defined as the volume-integral precipitation divided by the volume-integral water vapor convergence. CMPE increased from 62% to 70% and LSPE also increased from 30% to 45% compared with before and after landfall. Because of Taiwan terrain enhance typhoon secondary circulation, more water vapor transport inward to inner core region. It makes the cycling rate of precipitation process fast.
關鍵字(中) ★ 颱風
★ 水收支
★ 降水效率
關鍵字(英) ★ typhoon
★ water budget
★ precipitation efficiency
論文目次 中文摘要 .....................i
Abstract ...................ii
致謝 .......................iii
目錄 ........................iv
表目錄 .......................v
圖目錄 ......................vi
第一章 緒論 ..................1
1-1 前言 ....................1
1-2 文獻回顧 .................2
1-3 研究動機 .................4
第二章 模式設定與資料來源 .......5
2-1 資料來源 .................5
2-2 模式設定 .................5
2-3 颱風結構 .................7
第三章 分析方法 ..............12
3-1 水收支方程式 .............12
3-2 座標轉換 .................15
第四章 水收支結果 .............17
4-1 水氣收支 .................17
4-2 雲水/降水收支..............18
4-3 體積分收支 ...............20
4-4 降水效率 ................22
第五章 結論與未來展望 .........24
5-1 結論 ...................24
5-2 未來展望 ................25
參考文獻 .....................27
附錄 ........................30
參考文獻 翁靜儀,2009:MM5模式模擬之納莉颱風(2001)登陸時風場結構變化。國立中央大學碩士論文。
蔡雅婷,2006:納莉颱風登陸時的結構演化。國立中央大學碩士論文。
Braun, A. S., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water Budget. J. Atmos. Sci., 63, 43–63.
Gamache, J. F., and R. A. Houze Jr., 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 1835–1850.
──, ──, and ──, 1993: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50, 3221–3243.
Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418–442.
Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32, 25–59.
──, M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL Hurricane Prediction System. Mon. Wea. Rev., 123, 2791-2801.
──, ──, ──, and ──, 1998: The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126,1306-1322.
Li, X., C.-H. Sui, and K.-M. Lau, 2002:Precipitation efficiency in the tropical deep convective regime:A 2-D cloud resolving modeling study. J. Meteor Sci. Japan, 80, 205-212.
Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073-3093.
──, ──, and ──,1999: A multiscale numerical study of Hurricane Andrew (1992). Part II:Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597-2616.
Marks, F., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909–930.
──,and R. A. Houze Jr., 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 1296–1317.
Shapiro, L. J., and H. E. Willoughby,1982: The Response of Balanced Hurricanes to Local Sources of Heat and Momentum. J. Atmos. Sci., 39,378-394.
Sui, C. H., X. Li, M.-J. Yang, 2007: On the Definition of Precipitation Efficiency. J. Atmos. Sci., 64, 4506-4513.
Wang,Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model Description and Control Experiment. Mon. Wea. Rev., 129, 1370-1394.
──, 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and Senility to cloud microphysics. Mon. Wea. Rev., 129, 1370-1394.
──, 2008: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65,1505-1527.
──, 2009:How do outer rainband affect tropical cyclone structure and intensity? J. Atmos. Sci., 66,1250-1273.
──, and Jing Xu,2010: Energy Production, Frictional Dissipation, and Maximum Intensity of a Numerically Simulated Tropical Cyclone, J. Atmos. Sci., 67,97-116.
Willoughby, H. E., 1988: Linear Motion of a Shallow-Water, Barotropic Vortex. J. Atmos. Sci., 45,1906-1928.
Yang, B. , Y. Wang, B. Wang,2007:The Effect of Internally Generated Inner-Core Asymmetries on Tropical Cyclone Potential Intensity. J. Atmos. Sci., 64,1165-1188.
Yang, M.-J.,D.-L. Zhang, H.-L. Huang,2008:A Modeling Study of Typhoon Nari(2001) at Landfall. Part I:Topographic Effects. J. Atmos. Sci., 65,3095-3115.
Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–2763.
指導教授 楊明仁(Ming-Jen Yang) 審核日期 2010-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明