博碩士論文 976201018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:18.191.223.40
姓名 戴聖倫(Sheng-lun Tai)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報
(Improving short-term quantitaive precipitaion forecast by assimilating doppler radar observations with the four-dimensional variational technique.)
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效
★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究★ 使用偏極化/多都卜勒雷達資料研究莫拉克颱風(2009)地形降雨特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 前人研究曾經利用美國國家大氣研究中心(NCAR)所發展之都卜勒雷達變分分析系統(Variational Doppler Radar Analysis System, VDRAS),即時分析低層風場及輻合/散場以進行雷暴雨之預報,也曾同化單一或多個都卜勒雷達觀測資料以分析並預報超大胞與颮線系統,但大多使用於廣大開闊的平原地區,本研究則首次將VDRAS 應用在臺灣四面環海且地形複雜的環境。
為了檢視此同化系統應用於臺灣及鄰近地區的表現,吾人選取2008 年SoWMEX/TiMREX(西南氣流實驗)IOP8(第八次密集觀測期)中6 月14 日的鋒面系統作為研究個案,匯集探空、地面測站等觀測資料進行模式中背景場分析,並且利用VDRAS 同化中央氣象局七股及墾丁兩座S-band 都卜勒雷達之觀測資料(包含回波以及徑向風),藉此完成雲模式初始化得到最佳分析場,最後再由分析場進行預報。同時,為了探討地形對於定量降水預報的影響程度,吾人更嘗試將VDRAS 之最佳分析場與具有地形解析能力的WRF 模式進行結合預報,並比較其中差異。
檢視同化後的分析場,發現VDRAS 能合理分析天氣系統的動力及熱力結構;在預報場方面,模式對於主要線狀對流之移動方向有很好的掌握,故兩小時累計降水預報在門檻值6mm 之ETS score 為0.21。如將VDRAS 與WRF 結合進行預報,兩小時累計降水預報ETS score 在6、10、14、18mm 的降雨門檻皆較單獨使用VDRAS 及WRF 的預報為佳,其中與WRF 預報結果差距更加明顯。
摘要(英) In previous research the variational Doppler Radar Analysis System (VDRAS), developed by National Centers for Atmospheric Sciences (NCAR), had been applied in real-time analysis of low-level wind and convergence for nowcasting of thunderstorms. By assimilating single or multiple-Doppler radar observations, VDRAS was also utilized to analyze and forecast the super-cells and squall lines. However, most of those experiments were conducted in a wide open region with flat surface. In this study, it was attempted for the first time to apply VDRAS in Taiwan and her vicinity, where the topography over the island set a complicated geographic environment, and the surrounding oceans limited any type of observations except meteorological radars. These two factors posed a challenging task to the success of the model forecast of meso-scale precipitation systems.
In order to test the performance of VDRAS in Taiwan area, a real case of Mei-Yu front, occurred on 14 June 2008 during Southwest Monsoon Expeiment/Terrain-Influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX) IOP8, was chosen. The background field was prepared using observations from soundings and surface stations. Radar data collected by two Central Weather Bureau S-band radars, located at Cigu and Kenting respectively, were assimilated into VDRAS. Through the minimization of a cost function under the constraint of a numerical model (i.e., the 4DVAR method), an optimal analysis field was obtained for initialization, then followed by model forecasts. Furthermore, in order to investigate the influence on Quantitative Precipitation Forecast (QPF) by terrain effects, a series of forecasting experiments were designed in which the VDRAS analysis fields were carefully merged with Weather Research and Forecasting (WRF) model. The latter is known to have a better capability to resolve complex terrain.
Analysis fields obtained from assimilating radar data showed that VDRAS could produce dynamical and thermodynamic structures of a weather system rather reasonably. The model forecast, starting from the optimal analysis field, also agrees well with observations in terms of the moving direction of the main convective systems. The ETS score of two hours accumulated rainfall forecast at 6-mm threshold is 0.21. It was found that the QPF scores achieved by combining VDRAS and WRF could significantly exceed those of using WRF or VDRAS alone. Apparently this was attributed to the assimilation of radar data into VDRAS and the terrain-resolving capability of WRF.
關鍵字(中) ★ 都卜勒雷達變分分析系統
★ 四維變分同化
關鍵字(英) ★ 4DVAR
★ VDRAS
論文目次 中文摘要................................................i
英文摘要................................................ii
誌謝........................................................iv
目錄........................................................v
圖表說明................................................vii
第一章:緒論
1-1:前言...............................................1
1-2:文獻回顧.......................................2
1-3:研究目的.......................................3
第二章:雷達資料同化系統
2-1:都卜勒雷達變分分析系統...........4
2-1-1:雲模式........................................4
2-1-2:價值函數....................................5
2-1-3:伴隨模式....................................7
2-2:中尺度背景場................................8
2-3:雷達資料控管與處理....................10
第三章:個案介紹
3-1:2008 年西南氣流實驗..................12
3-2:綜觀天氣........................................12
3-3:雷達合成最大回波........................13
第四章:驗證方法
4-1:定量降水預報校驗........................15
4-1-1:降雨量計算與內插.....................15
4-1-2:校驗得分與指數.........................16
4-2:風場驗證........................................17
第五章:VDRAS 之分析與預報
5-1:模式設定與實驗設計....................19
5-2:中尺度背景場................................20
5-3:分析場............................................21
5-4:預報場............................................24
第六章:VDRAS 與WRF 結合預報
6-1:結合方法........................................27
6-1-1:模式比較.....................................27
6-1-2:資料內插方法.............................28
6-1-3:結合變數處理.............................28
6-1-4:平滑與調整方法.........................30
6-2:實驗設計........................................31
6-3:預報結果........................................32
第七章:結論與未來展望
7-1:總結................................................35
7-2:未來展望........................................36
參考文獻.................................................38
附表.........................................................41
附圖.........................................................43
參考文獻 鄧仁星,2000:RASTA(Radar Analysis System for Taiwan Area)使用說明書。
簡芳菁、洪景山、張文錦、周仲島、林沛練、林得恩、劉素屏,繆睿如、陳致穎,2006:WRF 模式之敏感度測試,第二部分:定量降水預報校驗,大氣科學,第34 期,第3 卷,261-276。
User's Guide for Weather Research and Forecast (WRF) Modeling System Version 3.
Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1335.
Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time series observations. NOAA Tech. Memo. Erl Nssl-62, 60pp.
Crook, N. A., and J. Sun, 2002: Assimilating radar, surface and profiler data for the Sydney 2000 forecast demonstration project. J. Atmos. Oceanic Technol., 19, 888–898.
Crook, N. A., and J. Sun, 2004 Analysis and Forecasting of the Low-Level Wind during the Sydney 2000 Forecast Demonstration Project. Weather and Forecasting 19:1, 151-167.
Dowell, C. D., F., Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004:Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982–2005.
Gal-Chen, T., 1978: A method for the initialization of the anelastic equations:Implications for matching models with observations. Mon. Wea. Rev., 106,587–606.
Hu, M., M. Xue, J. Gao, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic
thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 675–698.
Kawabata J., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Wakazuki,2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensiojnal variational data
assimilation system, J. Meteor. Soc. Japan, 85, 255-276.
Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38, 1558–1580.
Lin, Y.L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065-1092.
Lin, Y., P. Ray, and K. Johnson, 1993: Initialization of a modeled convective storm using Doppler radar derived fields. Mon. Wea. Rev., 121, 2757–2775.
Montmerle, T., A. Caya, and I. Zawadzki, 2001: Simulation of a midlatitude convective storm initialized with bistatic Doppler radar data. Mon. Wea. Rev., 129, 1949–1967.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570-575.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon.Wea. Rev., 131, 1663–1677.
Sun, J., and Y., Zhang, 2007: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364-2388.
Sun, J., 2005a: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793–813.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observation using a cloud model and its adjoint. Part I: Model
development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.
Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II:
Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852.
Sun, J., and N. A. Crook, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.
Warner, T. T., E. E. Brandes, C. K. Mueller, J. Sun, and D. N. Yates, 2000:Prediction of a flash flood in complex terrain. Part I: A comparison of rainfall estimates from radar, and very short range rainfall simulations from a dynamic model and an automated algorithmic system. J. Appl. Meteor., 39, 815–825.
Weygandt, S., A. Shapiro, and K. Droegemier, 2002a: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I:
Single-Doppler velocity retrieval. Mon. Wea. Rev., 130, 433–453.
Wilhelmson, R. B., and J. B. Klemp, 1981: Three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci., 38, 1558–1580.
Xiao, Q., and J. Sun, 2007: Multiple radar data assimilation and short-range QPF of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3318–3404.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y. Guo, and D. M. Barker, 2005:Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788.
Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storm. Part 1: Model development and preliminary testing. J. Atmos. Sci., 42, 1487–1509.
指導教授 廖宇慶(Yu-chieng Liou) 審核日期 2010-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明