博碩士論文 976201012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.119.255.31
姓名 高嘉婉(Jia-wan Kao)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 台灣地區PAMS觀測資料之顯著性和規律性的分析與探討
(The significance and regularity of PAMS observations of Taiwan)
相關論文
★ 海陸風對台灣沿海地區空氣品質之影響★ 東亞出流對春季大台北地區臭氧的影響
★ 地面風及溫度納進對台灣空氣品質模擬的影響★ 北台灣地區臭氧汙染之季節效應與東亞汙染出流之影響
★ PAMS光化評估測站揮發性有機物模擬及模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究最主要的目的即是探討台灣各地區光化評估測站(Photochemical Assessment Monitoring Station, PAMS)的逐時揮發性有機物(VOCs)濃度數據信心程度和規律性,主要分成兩部份來檢驗,首先是利用儀器本身對 PAMS 物種的偵測極限,計算各物種觀測值達到偵測極限的程度,定義為 Pass ratio,以此檢驗觀測值的信心程度,研究結果發現 PAMS 各物種在不同地區時,每個物種的 Pass ratio 表現大不相同。崇倫、草屯站大部分物種的 Pass ratio 主要集中在 70 % 以上,顯示在這兩個測站大部分物種的觀測是具有可信度的;反觀竹山站的結果,大部分物種的 Pass ratio 主要集中在 20 % 以下,因此其觀測資料的信心程度相對崇倫和草屯站來說是比較低的。再進一步將數據經過 Hilbert-Huang Transform(HHT)分析後,檢查觀測值中各種震盪模態的顯著性。將物種的偵測極限和顯著性比對結果分類,可以歸納出下面三種結果:第一種是濃度低且不具規律性的物種,第二種是信心程度高且具規律性的物種,第三種則是介於這兩種之間的其他物種。藉此找出 PAMS 各物種數據將來研究討論的價值。
整體來說,崇倫、草屯站的物種觀測大部分都有通過偵測極限,且顯著性測試結果較好,因此具有較高可信度和規律性,竹山站因位於中部地區的下風處,達到偵測極限以及顯著性測試的物種較少,但還是可以輔助其他兩站討論整個中部地區各種 PAMS 物種的特性。萬華、土城、橋頭測站位於都會和工業密集區,信心程度較高且具規律性的物種也都很多,而在中南部的台西站,雖然其位於郊區,普遍來說濃度都偏低,但可信度較低且不具規律性的物種較少,因其分類的臨界 Pass ratio 門檻值相對於各站來說較低,造成信心程度較高且具規律性的物種比較多,推測是因台西站的來源比較固定,主要污染來源為附近六輕工業區,所以就算其 Pass ratio 低,也可以從中找到規律性。各站物種歸納出來的結果大不相同, 分類之後發現崇倫站和草屯站具有較高可信度和規律性物種觀測值較多,崇倫共有 26 種,草屯則是 34 種,信心程度高的觀測值比竹山站多相當多,竹山站為10種,位於北部地區的萬華和土城兩站信心程度較高且具規律性的物種在萬華站有33種,土城站有23種。高雄地區的橋頭站信心程度較高且具規律性的物種為20 種,而在中南部的台西站有 18 種。在本研究中各站的觀測值皆沒有規律性,且物種濃度較低,在研究上比較不具代表性的物種為1-丁烯(1-Butene),而在各站的觀測值信心程度及規律性都較高的物種有丙烷(Propane)、異丁烷(iso-Butane)、正丁烷(n-Butane)、正己烷(n-Hexane)、乙苯(Ethylbenzene)、間,對-二甲苯(m,p-Xylene)。總結以上結果,此分析流程可以個別找出每個測站可信度較高且具規律性的物種,也可以篩選出各站濃度較低且可信度相對不高的物種。
摘要(英) The purpose of this study is to find out the confidence level and regularity of VOCs hourly data detected by Photochemical Assessment Monitoring Station (PAMS).The examination consists of two parts. First, We use the detection limit of PAMS species and Hilbert-Huang Transform(HHT) to calculate the degree to reach detection limit of each PAMS species and define it as pass ratio to check the confidence level of observed data. The result of study shows that the value of each PAMS species’s pass ratio varies obviously at different location. For example, the pass ratio of most PAMS species are over 70 % at Chunlung and Tsaotun stations, it shows that the PAMS species data observed from those two stations are highly reliable. On the other hand, the Pass ratio of most PAMS species are less than 20 % at Jhushan station, it shows that reliability and confidence level of observed data from this station are lower than Chunlung and Tsaotun stations. Second, after HHT analyzing of PAMS data, check the significance of each Intrinsic Mode Function (IMF) of observed data. We then classify the result of detection limit and significance comparison as three kinds of species to find out the value of PAMS species data of Taiwan PAMS stations in further research. First kind is low concentration and irregular species, second kind is high confidence level and regular species. third kind is other species which act between first kind and second kind.
Overall speaking, most PAMS observations of Chunlung and Tsaotun stations have reach detection limit and better significant test result, hence they have higher confidence level and regularity. Although the PAMS species of Jhushan station has less confidence level than Chunlung and Tsaotun stations because of its location at lee, it still can assist Chunlung and Tsaotun stations to discuss PAMS species characteristic of whole central area of Taiwan. Wanhua、Tucheng and Ciaotou stations all locate at urban area and industrial park, so they have higher confidence level of PAMS observation and more PAMS species with regularity. Although Taisi station locate at suburb of southern central area which has lower concentration, but it has fewer PAMS species with low confidence level and regularity. This is because lower threshold value of pass ratio compared to other stations make it has more PAMS species with higher confidence level and regularity. It is supposed Taisi station has more steady pollution PAMS species source, and the main pollution source is No. 6 Naphtha industrial park nearby, therefore even it has low pass ratio we can still find regularity from it. It has a big difference in concluded result between all stations PAMS species, and the analysis process can identify PAMS species with higher confidence level and regularity in every station. It also can filter low concentration and confidence level PAMS species comparatively in every station.
關鍵字(中) ★ 光化測站
★ 顯著性
★ 偵測極限
★ 信心程度
★ 規律性
關鍵字(英) ★ significant test
★ detection limt
★ HHT
★ PAMS
論文目次 摘要...................................................I
Abstract.............................................III
致謝...................................................V
目錄.................................................VII
附表說明..............................................IX
附圖說明..............................................XI
第一章 前言............................................1
1.1 研究動機...........................................1
1.2 研究目的...........................................2
第二章 文獻回顧........................................3
2.1 PAMS測站與物種.....................................3
2.1.1 PAMS光化測站簡介.................................3
2.1.2 PAMS物種簡介.....................................5
2.2 Hilbert-Huang Transform(HHT).....................6
2.2.1經驗模態分解法(Empirical Mode Decomposition)....7
2.2.2系集經驗模態分解法(Ensemble EMD;EEMD)..........9
2.2.3 Hilbert Spectrum................................11
2.2.4顯著性測試(Significance test)..................12
第三章 研究方法.......................................14
3.1研究方法流程.......................................14
3.2資料來源與前處理...................................14
3.2.1資料來源.........................................14
3.2.2 PAMS資料篩選....................................15
3.2.3 PAMS物種偵測極限................................16
3.3 HHT分析...........................................16
3.3.1 EEMD參數設定....................................17
3.3.2 顯著性測試......................................19
3.3.3 Hilbert Spectrum分析............................20
第四章 結果分析與討論.................................22
4.1 PAMS觀測資料與物種偵測極限之比較..................22
4.2 EEMD結果討論......................................25
4.3 顯著性測試結果分析................................26
4.4 PAMS物種偵測極限與顯著性測試結果綜合分析..........28
4.5 規律性統整與歸納..................................29
4.6 Hilbert Spectrum 結果討論.........................33
第五章 結論與未來展望.................................34
5.1 結論..............................................34
5.2 未來展望..........................................36
參考文獻..............................................37
附表..................................................39
附圖..................................................51
參考文獻 行政院環境保護署網頁,http://taqm.epa.gov.tw/taqm/zh-tw/default.aspx
美國PAMS網站,http://www.epa.gov/air/oaqps/pams
台灣環保署民國 91 年度光學評估監測站操作維護及運轉計畫報告書
台灣地區光化學污染之形成、傳輸機制及其影響期末報告書
Allen, J. B., and L. R. Rabiner, 1977: A unified approach to shorttime Fourier spectrum analysis and synthesis. Proc. IEEE, 65,1558–1564.
Daubechies, I., 1992: Ten Lectures on Wavelets. CBMS-NSF Series in Applied Mathematics, Vol. 61. SIAM, 357 pp.
Duffy, 2004. The Application of Hilbert–Huang Transforms to Meteorological Datasets. J. Atmos. Ocean Tech., 21, 599-611.
Gabor, D., 1946: Theory of communications. J. IEE, 93, 429–457.
Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40, 1001, doi:10.1029/2000RG00092.
Huang, N. E., and Coauthors, 1998a: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London, 454A, 903–995.
Huang, W., Z. Shen, N. E. Huang, and Y. C. Fung, 1998b: Use of intrinsic modes in biology: Examples of indicial response of pulmonary blood pressure to 6 step hypoxia. Proc. Natl. Acad. Sci. USA, 95, 12 766–12 771.
Huang, N. E., C. C. Chern, K. Huang, L. W. Salvino, S. R. Long, and K. L.Fan, 2001: A new spectral representation of earthquake data:Hilbert spectral analysis of Station TCU129, Chi-Chi, Taiwan,21 September 1999. Bull. Seismol. Soc. Amer., 91, 1310–1338.
Huang, N. E., S. S. P. Shen, Hilbrt-Huang Transform and Its Applications., World Scientific Publishing Co Pte Ltd., Singapore, 2005.
Pan, J.-Y., X.-H. Yan, Q.-N. Zheng, W. T. Liu, and V. V. Klemas,2003: Interpretation of scatterometer ocean surface wind vector EOFs over the Northwestern Pacific. Remote Sens. Environ., 84,53–68.
Salisbury, J. I., and M. Wimbush, 2002: Using modern time series analysis techniques to predict ENSO events from the SOI time series. Nonlinear Process. Geophys., 9, 341–345.
Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 61–78.
Wu, M.-L. C., S. Schubert, and N. E. Huang, 1999: The development of the South Asian summer monsoon and the intraseasonal oscillation.J. Climate, 12, 2054–2075.
Wu, Z. and Huang, N. E., (2004), “A study of the characteristics of white noise using the Empirical Mode Decomposition method,”Proceedings of the Royal Society A, Vol. 460, pp. 1597–1611.
Wu, Z. and Huang, N. E., (2005), “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193,No.173.
Wu, Z. and Huang, N. E., (2009), “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1–41.
Xie, L., L. J. Pietrafesa, and K. J. Wu, 2002: Interannual and decadal variability of land-falling tropical cyclones in the southeast coastal states of the United States. Adv. Atmos. Sci., 19, 677–686.
指導教授 張時禹(Julius S. Chang) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明