博碩士論文 975203018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.145.98.11
姓名 邱中威(Chung-Wei Chiu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 分集結合技術在相關性中上衰落通道上之二階統計特性
(Second-Order Statistics of Diversity Combining Receptions over Correlated Nakagami-m FadingChannels)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,為了兼顧實用與理論,在實驗室中產生了相關性複數中上衰落通道並且分析相關性通道上分集結合之二階統計特性-水平跨越比例和平均衰落區間。在最大-比率結合的推導中 [20],利用了匹配濾波器的概念並且假設接收到的信號彼此間是獨立的。而在先前的研究中[45], [46], [49],他們也是直接利用傳統的最大-比率結合定義-封包平方和。但當接收到的信號間有相關性時,最大-比率結合的傳統定義是錯誤的並且失去了最大訊雜比的優勢。在相關性通道中,最大-比率結合是依照KL 展開式推導獲得 [28],所以在做最大比率結合前,需要消除信號間的相關性,才能使訊號擁有最大訊雜比。
摘要(英) In practice and in theory, correlated complex Nakagami-m fading channels are generated in a laboratory environment, level crossing rate and average fade duration of diversity
combining over correlated Nakagami-m fading channels are analyzed in this paper. In the derivation of maximal-ratio combining [20], it uses the concept about matched filter and assumes that received signals are independent. The maximal-ratio combining method that was conventionally employed in the previous studied [45], [46], [49] directly sums envelope squares across all branches. If the fading channels are correlated, this method is definitely incorrectly performed and undoubtedly loses its predominance. By definition, when the fading channels are correlated, the MRC should be derived in accordance with the KL expansion theorem for random processes [28]. As a result, a whitening process has to be conducted prior to the power accumulation process for the maximum SNR.
關鍵字(中) ★ 平均衰落期間
★ 水平跨越比例
關鍵字(英) ★ average fade duration
★ level crossing rate
論文目次 Contents…... ............................................................................. iii
List of Figures ............................................................................ v
List of Tables ........................................................................... vii
Chapter 1 Introduction .......................................................... 1
Chapter 2 Review of Nakagami-m Channel Models ........... 4
2.1 Channel Models ................................................................................ 4
2.2 Nakagami-m Fading Channels........................................................ 12
2.3 First-Order Statistics ....................................................................... 15
2.3.1 Outage Probability ............................................................. 15
2.3.2 Average Bit Error Probability ............................................ 15
2.3.3 Channel Capacity ............................................................... 16
2.4 Second-Order Statistics .................................................................. 19
2.4.1 Level Crossing Rate........................................................... 19
2.4.2 Average Fade Duration ...................................................... 20
2.5 Diversity Combining ...................................................................... 20
2.5.1 Diversity Methods ............................................................. 21
2.5.2 Combining Techniques ...................................................... 22
Chapter 3 Fading Simulators .............................................. 24
3.1 Clarke‘s Fading Channel ................................................................ 25
3.2 The Nakagami-m Simulator Based on Sum-of-Sinusoids .............. 27
3.3 Correlated Fading Branches ........................................................... 29
3.3.1 Cholesky Decomposition ................................................... 29
3.3.2 Q.T. Zhang‘ Method .......................................................... 33
3.4 Complex Simulator ......................................................................... 39
Chapter 4 Second-Order Statistics of Diversity Combining
over Correlated Nakagami-m Fading Channels42
4.1 On Nakagami-m Fading Channels .................................................. 42
4.2 On Equal-Gain Combining over Correlated Nakagami-m Fading
Channels ........................................................................................ 46
4.2.1 Non-identical Case ............................................................ 46
4.2.2 Identical Case .................................................................... 50
4.3 On Selection Combining over Correlated Nakagami-m Fading
Channels ........................................................................................ 53
4.3.1 Non-identical Case ............................................................ 53
4.3.2 Identical Case .................................................................... 57
4.4 On Maximal-Ratio Combining over Correlated Nakagami-m
Fading Channels ............................................................................ 59
4.4.1 Identical Case .................................................................... 60
4.4.2 Non-identical Case ............................................................ 63
Chapter 5 Second-Order Statistics of Maximal-Ratio
Combining over Whitened Nakagami-m
Fading Channels ................................................ 66
5.1 On Maximal-Ratio Combining over L- Branch Correlated
Nakagami-m Fading Channels....................................................... 66
5.1.1 Identical Case .................................................................... 67
5.1.2 Non-identical Case ............................................................ 69
5.2 Correlation of Complex Signals ..................................................... 71
5.3 Whitening Method .......................................................................... 74
5.3.1 Eigen Decomposition ........................................................ 74
5.3.2 Cholesky Decomposition ................................................... 75
5.4 Simulation Results ............................................................................ 76
5.4.1 Parameter Settings ............................................................. 76
5.4.2 Simulated and Theoretical Covariance Matrix .................. 77
5.4.3 Simulated and Theoretical PDF, LCR and AFD ................ 78
Chapter 6 Conclusions ......................................................... 82
Bibliography ............................................................................. 83
參考文獻 [1] T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1996.
[2] A. Goldsmith, Wireless Communications, Stanford University Press, 2003.
[3] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York:
McGraw-Hill, 2008.
[4] M. Abramowitz and I. A. Stegun, Handbook of Mathenatical Functions. New
York: Dover Publications, 1972.
[5] G. Fraidenraich, J. C. S. S. Filho, and M. D. Yacoub, ―Second-order statistics of
maximal-ratio and equal-gain combining in Hoyt fading,‖ IEEE Commun. Lett.,
vol. 9, no. 1, pp. 19-21, Jan. 2005.
[6] B. Chytil, ―The distribution of amplitude scintillation and the conversion of
scintillation indices,‖ J. Atmos. Terr. Phys., vol. 29, pp. 1175-1177, Sep. 1967.
[7] C. X. Wang, N. Youseef, and M. Patzold, ―Level-crossing rate and average
duration of fades of deterministic simulation models for Nakagami-Hoyt fading
channels,‖ in Proc. WPMC’02, Honolulu, HI, Oct. 2002, pp.272-276.
[8] A. Mehrnia and H. Hashemi, ―Mobile satellite propagation channel part II—A
new model and its performance,‖ in Proc IEEE Vehicle Technology Conf. (VTC’
99), Amsterdam, The Netherlands, Sep. 1999, pp. 2780-2784.
[9] A. Annamalai, C. Tellambura, and V. K. Bhargava, ―Simple and accurate
methods for the outage analysis in cellular mobile radio systems—A unified
approach,‖ IEEE Trans. Commun., vol. 49, pp. 303-316, Feb. 2001.
[10] M. K. Simon and M. S. Alouini, ―A unified approach to the performance analysis
of digital communication over generalized fading channels,‖ in Proc. IEEE, vol.
86, Sep. 1998, pp. 1860-1877.
[11] M. Nakagami, ―The m-distribution–a general formula of intensity distribution of
rapid fading,‖ Statistical Methods in Radio Wave Propagation, W. C. Hoffman,
Ed. Elmsford, NY: Pergamon, 1960.
[12] T. Aulin, ―A modified model for the fading signal at a mobile radio channel,‖
IEEE Trans. Veh. Technol., vol. 28, no. 3, pp. 182-203, Aug. 1979.
[13] H. Suzuki, ―A statistical model for urban radio propagation,‖ IEEE Trans.
Commun., vol. 25, no. 7, pp. 673-680, Jul. 1977.
[14] T. M. Wu, ―Generation of Nakagami-m fading channels,‖ IEEE VTC, vol. 6, pp.
2787-2792, May 2006.
[15] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels,
2nd ed. New York: Wiley, 2005.
[16] M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and
Techniques. New York: McGraw-Hill, 1966.
[17] C. E. Shannon, ―A mathematical theory of communication,‖ Bell Syst. Tech. J.,
vol. 27, pp.379-423, Oct. 1948.
[18] R. J. McEliece and W. E. Stark, ―Channels with block interference,‖ IEEE Trans.
Inform. Theory, pp. 44-53, Jan. 1984.
[19] W. C. Y. Lee, ―Statistical analysis of the level crossings and duration of fades of
the signal from an energy density mobile radio antenna,‖ Bell Syst. Tech. J., vol.
46, pp. 417-448, 1967.
[20] D. G. Brennan, ―Linear diversity combining techniques,‖ in Proc. IRE, vol.47,
Jun. 1959, pp. 1075-1102.
[21] R. H. Clarke, ―A statistical theory of mobile-radio reception,‖ Bell Syst. Tech. J.,
vol. 47, pp.957-1000, Jul-Aug. 1968.
[22] W. C. Jakes, Jr., Ed., Microwave Mobile Communication. New York: Wily, 1974.
[23] K. Zhang, Z. Song, and Y. L. Guan, ―Cholesky decomposition model for
correlated MRC diversity systems in Nakagami fading channels,‖ IEEE VTC, vol.
3, pp. 1515-1519, Sep. 2002.
[24] Q. T. Zhang, ―Efficient generation of correlated Nakagami fading channels with
arbitrary fading parameter,‖ in Proc. ICC, 2002, vol. 3, pp. 1358-1362.
[25] J. C. S. S. Filho and M. D. Yacoub, ―Highly accurate ? ?? Approximation to
the sum of M independent nonidentical Hoyt variates,‖ Electron. Lett., vol. 4, no.
6, pp. 436-438, Mar. 2005.
[26] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes ―On higher order statistics
of the Nakagami-m distribution,‖ IEEE Trans. Veh. Technol., vol. 48, pp.
2360-2369, May 1991.
[27] P. Dent, G. E. Bottomley, and T. Croft, ―Jakes‘ fading model revisited,‖ Electron.
Lett., vol. 29, no. 13, pp. 1162-1163, Jun. 1993.
[28] H. Stark and J. W. Woods, Probability and Random Processes with Application
to Signal Processing, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001.
[29] M. F. Pop and N. C. Beaulieu, ―Limitations of sum-of-sinusoids fading channel
simulators,‖ IEEE Trans. Commun., vol. 49, no. 4, pp. 699-708, Apr. 2001.
[30] R. T. Smith and R. B. Minton, Calculus, 2ed ed. New York: McGraw-Hill, 2002.
[31] S. Kotz and J. Adams, ―Distribution of sum of identically distributed
exponentially correlated gamma variables,‖ Annals Math. Stat., vol. 35, pp.
227–283, Jun. 1964.
[32] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
vol. 46, no. 11, pp. 1141-1150, Nov. 1998.
[33] M. D. Yacoub, G. Fraidenraich, and J. C. S. Santos Filho, ―Nakagami-m
phase-envelope joint distribution,‖ Electron. Lett., vol. 41, no. 5, Mar.2005.
[34] N. Youssef, T. Munakata and M. Takeda, ―Fade statistics in Nakagami fading
environments,‖ in Proc. IEEE Int. Symp. Spread Spectrum Techniques and
Applications, Mainz, Germany, 1996, pp. 1244–1247.
[35] L. Yang and M. –S. Alouini, ―Average level crossing rate and average outage
duration of generalized selection combining,‖ IEEE Trans. Commun., vol. 51, no.
12, pp. 1997-2000, Dec. 2003.
[36] G. L. Siqueira and E. J. A. Vasquez, ―Local and global signal variability statistics
in a mobile urban environment,‖ Kiuwer Wireless Pers. Commun., vol. 15, no. 1,
pp. 61-78, Oct. 2000.
[37] S. O. Rice, ―Statistical properties of a sine wave plus random noise,‖ Bell System
Tech. J., vol. 27, pp. 109-157, Jan. 1948.
[38] S. O. Rice, ―Mathematical analysis of random noise,‖ Bell System Tech. J., vol.
23, pp. 282-332, Jul. 1944.
[39] R. S. Hoyt, ―Probability functions for the modulus and angle of the normal
complex variate,‖ Bell System Tech. J., vol. 26, pp. 318-359, Jan. 1947.
[40] W. C. Y. Lee, ―Level crossing rates of an equal-gain predetection diversity
combiner,‖ IEEE Trans. Commun. Technol., vol. COM-18, pp. 417-426, Aug.
1970.
[41] F. Adachi, M. T. Feeney, and J. D. Parson, ―Effects of correlated fading on level
crossing rates and average fade durations with predetection diversity reception,‖
Proc. Inst. Elect. Eng., vol. 135, pp. 11-17, Feb. 1988.
[42] W. R. Braun and U. Dersch, ―A physical mobile radio channel model,‖ IEEE
Trans. Veh. Technol., vol. 40, no. 2, pp. 472-482, May 1991.
[43] K.W. Chan, Second-Order Statistics for Diversity Combining Techniques in
Nakagami Fading Channels, National Central University, June 2009
[44] Q. T. Zhang, ―Exact analysis of postdetection combining for DPSK and NFSK
systems over arbitrarily correlated Nakagami channels,‖ IEEE Trans. Commun.,
vol. 46, no. 11, pp. 1459-1467, Nov. 1998.
[45] Q. T. Zhang, ―Maximal-ratio combining over Nakagami fading channels with an
arbitrary branch covariance matrix,‖ IEEE Trans. Veh. Technol., vol. 48, no. 4,
pp. 1141-1150, Jul. 1999.
[46] D. Li and V. K. Prabhu, ―Average level crossing rates and average fade durations
for maximal-ratio combining in correlated Nakagami channels,‖ in Proc. WCNC,
Mar. 2004, pp. 339-344.
[47] G. K. Karagiannidis, D. A. Zogas, and S. A. Kotsopoulos, ―On the multivariate
Nakagami-m distribution with exponential correlation,‖ IEEE Trans. Commun.,
vol. 51, no. 8, Aug. 2003.
[48] J. Reig, ―Multivariate Nakagami-m distribution with constant correlation
model,‖ Int. J. Electron. Commun. (AEU), vol. 63, no. 1, Jan.
[49] V. A. Aalo, ―Performance of maximal-ratio diversity systems in a correlated
Nakagami-m fading environment,‖ IEEE Trans. Commun., vol. 43, no. 8, pp.
2360-2369, Aug. 1995.
[50] O. C. Ugweje and V. A. Aalo, ―Performance of selection diversity system in
correlated Nakagami fading,‖ IEEE VTC, vol. 3, pp. 1488-1492, May 1997.
[51] M. S. Alouini, A. Abdi, and M. Kaveh, ―Sum of gamma variates and
performance of wireless communication systems over Nakagami-fading
channels,‖ IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1471-1480, Nov. 2001.
[52] J. Reig and N. Cardona, ―Nakagami-m approximate distribution of sum of two
Nakagami-m correlated variables,‖ Electron. Lett., vol. 36, no. 11, pp. 978-980,
May 2000.
[53] J. Reig, L. Rubio and N. Cardona, ―Bivariate Nakagami-m distribution with
arbitrary fading parameters, ‖ Electron. Lett., vol. 38, no. 25, pp. 1715-1717, Dec.
2002.
[54] C. Tellambura, A. Annamalai, and V. K. Bhargava, ―Contour Integral
Representation for Generalized Marcum-Q Function and Its Application to
Unified Analysis of Dual-Branch Selection Diversity over Correlated
Nakagami-m Fading Channels,‖ IEEE VTC, vol. 2, pp. 1031-1034, May 2000.
[55] Lin Yang and Mohamed-Slim Alouini, ―An Exact Analysis of the Impact of
Fakding Correlation on the Average Level Crossing Rate and Average Outage
Duration of Selection Combining,‖ IEEE VTC, vol. 2, pp. 241-245, Apr. 2003.
[56] Chantri Polprasert and James A. Ritcey, ―A Nakagami Fading Phase Difference
Distribution and its Impact on BER Performance,‖ IEEE Trans. Wireless
Commun., vol. 7, no. 7, pp. 2805-2813, Jul. 2008.
[57] Jia-Chin Lin, ―A modified PN code tracking loop for direct-sequence
spread-spectrum communication over arbitrarily correlated multipath fading
channels,‖ IEEE Journ. Select. Area. Commun., vol. 19, no. 12, pp. 2381-2395,
Dec. 2001.
[58] Jia-Chin Lin, ―Differentially coherent PN code acquisition based on a matched
filter for chip-asynchronous DS/SS communications,‖ IEEE Trans. Vehic.
Technol., vol. 51, no. 6, pp. 1596-1599, Nov. 2002.
[59] Jia-Chin Lin, ―Differentially coherent PN code acquisition with full-period
correlation in chip-synchronous DS/SS receivers,‖ IEEE Trans. Commun., vol.
50, no. 5, pp. 698-702, May 2002.
[60] Jia-Chin Lin, ―A frequency offset estimation technique based on frequency error
characterization for OFDM communication on time-varying multipath fading
channels,‖ IEEE Trans. Vehic. Technol., vol. 56, no. 3, pp. 1209-1222, May
2007.
[61] Jia-Chin Lin, ―Coarse frequency offset acquisition via subcarrier differential
detection for OFDM communications,‖ IEEE Trans. Commun., vol. 54, no. 8, pp.
1415-1426, Aug. 2006.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2010-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明