博碩士論文 975203016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.144.19.53
姓名 黃筱琦(Hsiao-chi Huang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 無線通訊系統之測距演算法設計
(Ranging algorithm designs for wireless systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在無線通訊系統上由於各使用者與基地台的位置不相同,我們需得知相關的測距資訊,來達到系統的要求。本論文分成兩系統來討論, 一個為雷達系統,另一個為初始測距的OFDMA系統。
調頻連續波(FMCW)雷達利用在時間上改變發射訊號的頻率,並測量接受信號與發射訊號頻率間的差值來測定目標距離與速度等資訊。本論文主要研究如何設計調頻連續波訊號波形,以有效抗干擾並能測得目標訊號的距離與速度資訊。
使用者與基地台建立通訊需要得知關於同步的參數,利用正交分多工接進系統的初始測距在基地台上可接收到關於時間與頻率的訊號,並利用此訊號搭配ESPRIT 演算法進一步求得關於測距的同步參數。本論文運用其他類似ESPRIT的演算法,並同時偵測出頻率位移和時間延遲,而目前的演算法[24]需利用不同的訊號處理再分別求出頻率位移和時間延遲。
摘要(英) Because the position of every user is varied from the base station, we may need to know the related ranging information which may be required for the system. The thesis is divided into two parts. The first part is the algorithm designed for radar systems. The second part is the initial ranging algorithm design for OFDMA systems.
FMCW radar utilizes the technology by changing frequency in time from the transmitter. By way of the time difference and Doppler frequency between the transmitted and received signals, we can obtain the information about distance and velocity. The purpose of this part in the thesis is to design an FMCW signal which can resist to interferences while retain the capability of detecting the distance and velocity.
An initial ranging estimation scheme for OFDMA systems is proposed as users intend to establish communication link with the base station (BS) by utilizing spreading in both the time and the frequency domains. The synchronization parameters can be estimated by using the ESPRIT algorithm. We will use a similar ESPRIT algorithm to estimate timing delay and frequency offset simultaneously. In [15], the estimation of the timing delay and the frequency offset requires two sets of signals for processing separately to achieve to this task.
關鍵字(中) ★ 正交分頻多工接進
★ 測距
★ 調頻連續波雷達
關鍵字(英) ★ OFDMA
★ Ranging
★ FMCW
論文目次 Contents I
List of Tables III
List of Figures IV
Chapter 1 Introduction 1
1-1 Frequency modulation continuous wave radar 1
1-2 Initial ranging in OFDMA system 2
Chapter 2 System model for FMCW radar 5
2-1 FMCW radar signal model 5
2-2 Ambiguity function 6
2-3 Frequency-coding 7
2-3-1 Costas coded method 8
2-3-2 Phase coded method 9
Chapter 3 Problem formulation for FMCW radar 10
3-1 Design of anti-interference wave radar signal 10
3-2 Solve information parameters about ranging 12
3-3 Interference signal 14
3-3-1 Single frequency interference 14
3-3-2 Multi-frequency interference 15
3-4 Summary of anti-interference wave radar design 16
Chapter 4 Initial ranging algorithm in IEEE 802.16e OFDMA17
4-1 System model 17
4-1-1 System description 17
4-1-2 Signal model 18
4-2 ESPRIT-based algorithm 20
4-2-1 Frequency estimation 20
4-2-2 Timing estimation 22
4-3 Unitary ESPRIT 24
4-3-1 2D Unitary ESPRIT 26
4-4 OT-ESPRIT 27
4-5 Channel model 28
Chapter 5 Simulation 30
5-1 FMCW radar 30
5-1-1 Estimation of delay time and doppler frequency30
5-1-2 Add noise and interference 32
5-1-3 Coded sequence 35
5-1-4 Estimation error of delay time and doppler
frequency 38
5-2 Initial ranging in OFDMA system 39
5-2-1 Simulation parameters 39
5-2-2 ESPRIT-based 40
5-2-3 Unitary ESPRIT 41
5-2-4 OT-ESPRIT 43
Chapter 6 Conclusion 45
6-1 FMCW radar 45
6-2 Initial ranging in OFDMA system 45
Reference 46
參考文獻 [1]M. I. Skolnik, Introduction to RADAR System, McGraw-Hill, 2nd ed., 1981.
[2]A. G. Stove, “Linear FMCW radar techniques,” in Proc. Inst. Electr. Eng. F – Radar Signal Process., vol.139, no.5, pp.343-350, Oct. 1992.
[3]G. Zhang, M. Guo and Y. Bao, “Silence tracking radar,” in Proc. CIE Int. Conf. on Radar, pp. 125-128, Oct. 2001
[4]R. Zhang, J. Yang and J. Xiong, "Novel method of parameter estimation for moving target in millimeter-wave short-range linear FMCW radar," in Proc. ICSP Int. Conf. on Signal Processing, Aug. 2004
[5]S. O. Piper, “Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep,” in Proc. IEEE Int. Radar Conf., pp. 563-567, May, 1995.
[6]J. Krinock, M. Singh, M. Paff, A. Lonkar, L. Fung, and C.-C. Lee, “Comments on OFDMA ranging scheme described in IEEE 802.16ab-01/01r1,” IEEE 802.16 Broadband Wireless Access Working Group, Tech. Rep., July 2001.
[7]H. A. Mahmoud, H. Arslan, and M. K. Ozdemir, “Initial ranging for WiMAX (802.16e) OFDMA,” in Proc. IEEE Military Commun. Conf., pp. 1–7, Oct. 2006.
[8]K. N. Kim, S. C. Kim, J. H. Kim and S. J. Cho, “The scheme to improve the performance of initial ranging symbol detection with common ranging code for OFDMA systems,” in Proc. 8th Int. Conf. Advanced Commun. Technol. (ICACT), vol.1, pp. 183–188, Feb. 2006.
[9]J. Zeng, H. Minn, “A novel OFDMA ranging method exploiting multiuser diversity,” in Proc. IEEE Global Telecomm. Conf., vol.1, pp. 1498–1502., Nov. 2007.
[10]X. Fu, Y. Li, and H. Minn, “A new ranging method for OFDMA systems,” IEEE Trans. Wireless Commun., vol.6, no.2, pp.659–669, Feb. 2007.
[11]D. S. Radovic and M. M. Eric, “Performance of subspace based multi-user CFO estimation for interleaved OFDMA uplink,” in Proc. Int. Conf. on Computer as a tool, pp.1602-1605, vol.2, Nov. 2005.
[12]Z. Cao, U. Tureli, and Y. D. Yao, “Deterministic multiuser carrier frequency offset estimation for the interleaved OFDMA uplink,” IEEE Trans. Commun., vol.52, no.9, pp.1585–1594, Sept. 2004.
[13]J. Lee, S. Lee, K. J. Bang, S. Cha and D. Hong, “Carrier frequency offset estimation using ESPRIT for interleaved OFDMA uplink systems,” IEEE Trans. Vehicular. Technol., vol.56, no.5, pp.3227–3231, Sept. 2007.
[14]M. Morelli, L. Sanguinetti, and H. V. Poor, “A robust ranging scheme for OFDMA-based networks,” IEEE Trans. Commun., vol.57, no.8, pp.2441–2452, Aug. 2009.
[15]L. Sanguinetti, M. Morelli and H. V Poor, “An ESPRIT-Based Approach for Initial Ranging in OFDMA Systems”, IEEE Trans. Commun., vol.57, Nov 2009.
[16]A. Meta, P. Hoogeboom and L. P. Ligthart, “Signal Processing for FMCW SAR” IEEE Trans. on Geoscience and Remote Sensing, vol. 45, no. 11, Nov. 2007.
[17]T. D. Bhatt, E. G. Rajan and P. V. D. Somasekhar Rao, ” Design of frequency-coded waveforms for target detection ,” Radar, Sonar & Navigation, IET. vol2, no. 5, pp.388-394, Oct. 2008.
[18]F. Liu, J. Wang and G. Yu, “An OTST-ESPRIT Algorithm for Joint DOA-Delay Estimation”, IEEE ISCIT, vol.2, pp.734-738, Oct. 2004.
[19]S. Scheiblhofer, S. Schuster and A. Stelzer, “Signal Model and Linearization for Nonlinear Chirps in FMCW Radar SAW-ID Tag Request,” IEEE Trans. on Microwave Theory and Technol, vol.54, no.4, pp.1477-1483, Apr. 2006.
[20]A. Meta, P. Hoogeboom, and L. P. Ligthart, “Signal Processing for FMCW SAR,” IEEE Trans. on Geoscience and Remote Sensing, vol. 45, no. 11, Part 1, pp.3519-3532, Nov. 2007.
[21]Auslander, L.; Tolimieri, R ,"Characterizing the radar ambiguity functions", IEEE Trans. on Information Theory, vol.30, no. 6, pp.832-836, Nov. 1984.
[22]C. N. Oligboh, M. SC. and M. H. Ackroyd, "Linear frequency coded sequence (L.F.C.S.)"Electronic Circuits and Systems, IEE Proceedings G, vol.127, no. 4, pp.191-198, Aug. 1980.
[23]A. Grzywacz, "Experimental Investigations of Digital Signal Processing Techniques in an FMCW Radar for Naval Application in an FMCW Radar for Naval Application," Int. Conf. on Microwaves, Radar and Wireless Commun., vol.3, pp.757-763, Aug. 2002
[24]Nadav Levanon ; Eli Mozeson , Radar signals ,Hoboken, NJ : J. Wiley, 2004.
[25]IEEE LAN/MAN Standard Committee, “IEEE standard for local and metropolitan area networks part 16: Air interface for fixed and mobile broadband wireless access systems, Amendment 2 and Corrigendum 1”, IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor1-2005, 2005.
[26]Y. F. Chen, “Analysis of ESPRIT-Based Algorithms for Blind Frequency Offset Estimation on MC-CDMA Downlink”, IEICE Trans. Commun., vol. E89-B, no.3, Mar. 2006.
[27]Y. F. Chen and M. D. Zoltowski, “Joint angle and delay estimation for DS-CDMA with application to reduced dimension space-time RAKE receivers, ”, IEEE ICASSP, vol. 5, pp.2933 – 2936, 1999.
[28]Y. Zhou, Z. Zhang and X. Zhou, “OFDMA Initial Ranging for IEEE 802.16e Based on Time-domain and Frequency-domain Approaches”, IEEE ICCT, pp. 1-5, Nov. 2006.
[29]M. Haardt, M. D. Zoltowski, C. P. Mathews and J. A. Nossek, “2D unitary ESPRIT for efficient 2D parameter estimation. ”, IEEE ICASSP, vol.3, pp.2096 – 2099, 1995.
[30]F. Ji, J Liang and F. J Chen, “ESPRIT algorithm for joint delay and 2-dimensional DOA estimation of multipath parameters”, IEEE MAPE, pp.1093-1094, 2007.
[31]M. Haardt and J. A. Nossek, “Unitary ESPRIT: How to Obtain Increased Estimation Accuracy with a Reduced Computational Burden”, IEEE Trans. Signal Processing, vol.43, no. 5, May 1995.
指導教授 陳永芳(Yung-fang Chen) 審核日期 2010-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明