博碩士論文 975201063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.145.90.119
姓名 吳政耀(Zheng-yao Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體
(10 Gbit/sec Planar InAlAs Avalanche Photodiodes with Large Active Area and Bandwidth Enhancement Effect under High-Sensitivity Operation Mode)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器
★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器
★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們提出一個新的平面型InAlAs分離式吸收、傳輸、電荷、累增之累增崩潰光二極體(SATCM APD)結構。在傳統的分離式吸收、電荷、累增之累增崩潰光二極體(SACM APD)結構中插入了一層InP傳輸層,藉此我們可以在0.9Vbr的操作下觀察到一3-dB頻寬增強現象,且可以降低RC頻寬限制和二次電洞傳輸時間兩者之間的利弊關係。因此,我們可以將我們提出的SATCM APD的主動區的直從典型的10Gbit/sec APD 的30?m 增加到40?m或50?m而仍然能維持在10Gbit/sec的高速操作。
除此之外,由於我們的SATCM APD 結構中的厚空乏區(~2.5?m)和適當的電荷層摻雜濃度,我們可以在達到擊穿電壓(~18V)時,就擁有接近2的增益,在元件發生崩潰之前,有接近20伏的操作電壓範圍。使用我們提出的SACTM APD 結構,在主動區直徑為40?m or 50?m時,可以成功達到在0.9Vbr (~39V) 操作下,有頻寬增強的現象和可接受的低暗電流(~50nA);而在10Gbit/sec 操作時,有-23dBm的靈敏度。
摘要(英) We demonstrate a novel type of planar InAlAs based separated absorption, transport, charge, and multiplication (SATCM), avalanche photodiode (APD) structure. By inserting an additional InP transport layer in the traditional InAlAs based SACM-APD structure, a strong 3-dB bandwidth enhancement (BE) phenomenon under 0.9 breakdown voltage (0.9Vbr) operation has been observed, which greatly releases the trade-off between RC-limited bandwidth and secondary-hole transport time. Through the use of such phenomenon, we can thus increase the active diameter of our SATCM-APD from 30?m, which is the typical size of 10Gbit/sec APD, to around 50 or 40?m and sustain its capability for 10Gbit/sec high-speed operation with a great improvement in alignment tolerance.
Furthermore, due to a thick depletion layer (~2.5?m) in our SATCM-APD structure, by properly optimizing the charge layer doping density, we can achieve a multiplication gain around 2 at punch-through voltage (~18V) with a 20V operation voltage window till breakdown occurs. Under 0.9Vbr (~39V) operation with BE phenomenon, a reasonable dark current (~50nA) and sensitivity (-23dBm) at 10Gbit/sec operation by use of our SATCM-APD with a 40 or 50?m active diameter has been successfully achieved.
關鍵字(中) ★ 累增崩潰光二極體 關鍵字(英) ★ avalanche photodiode
論文目次 Abstract i
摘要 ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xx
第一章 序論 1
§1.1 累增崩潰光二極體與PIN光二極體 1
§1.2 傳統的PIN光二極體 2
§1.3 傳統的累增崩潰光二極體 5
§1.4 分離式吸收、電荷、累增之累增崩潰光二極體(SACM APD) 8
§1.5 InP SACM累增崩潰光二極體 9
§1.6 InAlAs SACM累增崩潰光二極體 11
§1.7 論文動機與架構 15
第二章 累增崩潰光二極體之設計與製作 16
§2.1 累增崩潰光二極體之設計與模擬 16
§2.2 累增崩潰光二極體之製程 26
第三章 累增崩潰光檢測器之量測與結果討論 38
§3.1 Heterodyne-Beating 量測系統之架設 38
§3.2 量測結果 39
第四章 結論與未來研究方向 46
§4.1 結論 46
§4.2 未來研究方向 47
參考文獻 49
附錄 51
參考文獻 [1] S. M. Sze, “Physics of Semiconductor devices,” John Wiley & Sons, 2nd Edition, 1981.
[2] D. A. Neamen, “Semiconductor physics & Devices Basic Principle,” McGraw-Hill Companies, 3rd Edition, 2003.
[3] B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-Mode Avalanche Photodiodes for Three- Dimensional Imaging,” Lincoln Laboratory Journal, vol. 13, no. 2, pp. 335-350, 2002.
[4] H. Kosaka, A. Tomita, Y. Nambu, T. Kimura and K. Nakamura, “Single-photon interference experimentover 100 km for quantum cryptography system using balanced gated-modephoton detector,” IEE Electron. Lett., vol. 39, no. 16, pp. 1199-1201, Aug. 2003.
[5] S. O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice Hall, 2001.
[6] George M. Williams and Andrew S. Huntington, “Probabilistic analysis of Linear Mode vs Geiger Mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE, vol. 6220, no. 622008, 2006.
[7] D. Haiko, F. Uherek and F. Mika, “InGaAs/InP Avalanche Photodiodes with a Thin Multiplication Layer,” ASDAM 2002 Smolenice Castle, Slovakia, pp. 91-94, Oct. 14-16, 2002.
[8] M. A. Itzler, K. K. Loi, S. McCoy, N. Codd, “High-performance, manufacturable avalanche photodiodes for 10 Gb/s optical receivers,” Proc. OFC 2000, Baltimore, MD, USA, vol. 4, pp. 324-326, 2000.
[9] J. Jung , Y. H. Kwon , K. S. Hyun and I. Yun, “Reliability of planar InP–InGaAs avalanche photodiodes with recess etching, ” J. Lightw. Technol., vol. 14, no. 8, pp. 1160-1162, Aug. 2002.
[10] H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APD’s,” J. Lightw. Technol., vol. 6, no. 10, pp.1496-1501, Oct. 1988.
[11] N. Duan, S. Wang, X. G. Zheng, X. Li, N. Li, J. C. Campbell, C. Wang, and L. A. Coldren, “Detrimental effect of impact ionization in the absorption region on the frequency response and excess noise performance of InGaAs-InAlAs SACM avalanche photodiodes,” IEEE J. Quantum Electron., vol. 41, no. 4, pp. 568-572, Apr. 2005.
[12] E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y. Tokuda, and T. Ishikawa, “Degradation Mode Analysis on Highly Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,” J. Lightw. Technol., vol. 25, no. 12, pp. 3686-3693, Dec. 2007.
[13] B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D. Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Technol. Lett., vol. 18, no. 18, pp. 1898-1900, Sep. 2006.
[14] A. Rouvie, D. Carpentier, N. Lagay, J. Decobert, F. Pommereau, and M. Achouche, “High Gain × Bandwidth Product Over 140-GHz Planar Junction AlInAs Avalanche Photodiodes,” IEEE Photon. Technol. Lett., vol. 20, no. 6, pp. 455-457, March 2008.
[15] J. C. Campbell, “Recent advances in telecommunications avalanche photodiodes, ” J. Lightw. Technol., vol. 25, no. 1, pp. 109-121, Jan. 2007.
[16] E. Yagyu, E. Ishimura, M. Nakaji, T. Aoyagi, K. Yoshiara, and Y. Tokuda, “Investigation of guardring-free planar AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett., vol. 18, no. 11, pp. 1264-1266, Jan. 2006.
[17] I. Watanabe, T. Nakata, M. Tsuji, K. Makita, T. Torikai and K. Taguchi, “High-speed, high-reliability planar-structure superlattice avalanche photodiodes for 10-Gb/s optical receivers,” J. Lightw. Technol., vol. 18, no. 12, pp. 2200-2207, Dec. 2000.
[18] T. Torikai, T. Nakata, T. Kato, and K. Makita, “40-Gbps Waveguide Avalanche Photodiodes,” Proc. OFC 2005, Anaheim, CA, USA, vol. 6, OFM3, Sep., 2005.
[19] T. Nakata , T. Takeuchi , I. Watanabe , K. Makita and T. Torikai, “10 Gb/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure, ” IEE Electron. Lett., vol. 36, no. 24, pp. 2033-2034, Nov. 2000.
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明