博碩士論文 965301028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.118.146.46
姓名 劉志春(Chih-Chun Liu)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 Ka頻段主動式陣列天線暨接收機前端電路之研製
(Ka-Band Active Antenna Array and Receiver Front-End Circuits Design)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究內容為Ka頻段主動式陣列天線及接收機之前端電路研究,其中所設計的主動式天線陣列部分則是利用Rogers RO5880板材所製作,整合低雜訊放大器以及功率放大器,並且固定於金屬機殼之中;晶片則是利用tsmc 0.18 ?m CMOS製程研製,包括28 GHz共源極寬頻放大器、28 GHz變壓器回授技術之共平面波導低雜訊放大器、27.1 GHz變壓器回授式壓控振盪器等。
主動式天線陣列設計中包含了一分四威金森功率分配器、角型偶極天線(Angled-dipole antenna)、角型偶極天線陣列(Angled-dipole antenna array)以及整合低雜訊放大器及功率放大器之主動式天線陣列(active antenna array)。
Ka 頻帶接收機前端電路則包含三個電路,其中28 GHz寬頻低雜訊放大器,中心頻率為28 GHz,功率增益為12.6 dB,而3-dB頻寬可以達到8 GHz,其中平坦度可以達到±1.3 dB,輸入輸出返回損耗皆大於8.3 dB,雜訊指數在22 ~ 30 GHz之間為4.87 ~ 6.55 dB。Ka頻段變壓器回授技術之共平面波導低雜訊放大器,中心頻率在28 GHz,功率增益為15.11 dB,輸入返回損耗大於12 dB,輸出返回損耗則大於7 dB,雜訊指數在28 GHz 之間為5.87 dB。27.1 GHz變壓器回授型壓控振盪器則是利用變壓器來獲得較低的相位雜訊,在1 MHz的相位雜訊為-93.27 dBc/Hz,輸出功率為-17 dBm,可調頻率範圍為700 MHz。
摘要(英) The work in this thesis focuses on Ka-band active array antenna and Ku-band RF receiver front-end circuits. The active array antenna uses Rogers RO5880 substrate to integrate the low noise amplifier (LNA) and power amplifier (PA), then assemble them to the metal housing. The LNA and PA were designed and fabricated in tsmc 0.18 ?m CMOS technology. The designed circuits include 28 GHz common source wideband LNA, Ku-band CPW LNA with transformer feedback technique. A 27.1 GHz transformer feedback voltage control oscillator is also designed and demonstrated.
The active antenna array design includes Wilkinson power divider, angled-dipole antenna, angled-dipole antenna array and active antenna array which integrate previous mentioned LNA and PA.
The thesis further addresses Ka-band RF receiver front-end circuits. The 28 GHz common source wideband LNA was implemented using inductive source degenerated topology. The LNA achieved a gain of 12.6 dB, a 3-dB bandwidth of 8 GHz and the input /output return losses of more than 8.3 dB , a noise figure of 4.87 ~ 6.55 dB between 22 ~ 30 GHz. The Ka-band CPW LNA using transformer feedback technique achieved a gain of 15.11 dB, input return losses of more than 12 dB, output return loss of more than 7 dB, a noise figure of 5.87 dB. The 27.1 GHz transformer feedback voltage controlled oscillator utilized the transformer to lower the phase noise. This VCO obtained a tuning range of 700 MHz, an output power of -17dBm, and the phase noise of -93.27 dBc/Hz at 1 MHz offset.
關鍵字(中) ★ 陣列天線
★ 低雜訊放大器
★ 壓控振盪器
關鍵字(英) ★ VCO
★ LNA
★ Array antenna
論文目次 目 錄
中文摘要...I
英文摘要...II
誌謝 ..II
目錄 ..V
圖目錄 ..VIII
表目錄 ..XII
第一章 緒論 .. 1
1-1 研究動機 .. 1
1-2 研究成果 .. 1
1-3 章節簡述 .. 2
第二章 主動式陣列天線 .. 3
2-1 主要設計架構介紹 .. 3
2-1.1 Ka頻段威金森功率分配器 .. 4
2-1.2模擬與量測結果比較 .. 5
2-1.3 RF Housing ........... 9
2-1.4天線量測環境 ................... 10
2-2角型偶極天線 (Angled-Dipole antenna).... 11
2-2.1天線架構與設計 .................. 11
2-2.2角型天線模擬與量測 ......... 13
2-3角型天線陣列 .......................... 17
2-3.1天線設計與架構 ................. 17
2-3.2天線模擬與量測 ................. 19
2-3.3 結果與討論…............................ 21
2-4主動角型天線陣列............................22
2-4.1主動電路規格 ................... 22
2-4.2主動電路與天線之整合 .............. 23
2-4.3量測結果 ... 25
2-4.4結果討論 ... 28
第三章 低雜訊放大器 ... 29
3-1 低雜訊放大器簡介 ... 29
3-1.1低雜訊放大器電路雜訊來源分析 ... 29
3-1.2單級和串接雜訊指數分析 ........... 30
3-2 28 GHz共源級寬頻低雜訊放大器 ........... 31
3-2.1電路設計重點 ..................... 31
3-2.2電路架構與設計說明 ............ 32
3-2.3電路模擬與量測結果 ............ 33
3-2.4結果討論 ..................... 39
3-3 Ka頻段變壓器回授技術之共平面波導低雜訊放大器設計 .......................................40
3-3.1電路設計重點 ..................... 40
3-3.2電路架構與設計說明 ............ 40
3-3.3電路模擬與量測結果 ............ 45
3-3.4結果討論 ..................... 51
第四章 27.1 GHz壓控振盪器 ..................... 52
4-1 壓控振盪器簡介 ..................... 52
4-1.1振盪器原理 ..................... 53
4-1.2相位雜訊介紹 .............................. 53
4-2 27.1 GHz 變壓器回授型壓控振盪器 ... 53
4-2.1電路設計重點 .............................. 53
4-2.2電路主要架構分析 ..................... 54
4-2.3電路的模擬與量測結果 ..................... 57
4-2.3結果討論 .............................. 60
第五章 論文結論及未來方向 ..................... 61
參考文獻 ....................................... 63
參考文獻 [1] Y. S. Lin and C. C. Chen, “0.18 mm 21–27 GHz CMOS UWB LNA with 9.3+1.3 dB gain and 103.9+8.1 ps groupdelay,” Electron. Lett., vol. 44, no. 1, Aug. 2008.
[2] S. C. Shin, M. D. Tsai, R. C. Liu, K. Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF Low-Noise Amplifier Using 0.18μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, Jul. 2005.
[3] K. W. Yu, Y. L. Lu, D. C. Chang, V. Liang and M. F. Chang, “K-band low-noise amplifiers using 0.18μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106-108, Mar. 2004.
[4] C. H. Doan, S. Emami, A. M. Niknejad and R. W. Brodersen, “Millimeter-Wave CMOS Design”, IEEE J. Solid-State Circuits, vol. 40, no. 1, Jan. 2005.
[5] B. Afshar and A. M. Niknejad Berkeley Wireless Research Center, Dept. UC Berkeley, “X/Ku Band CMOS LNA Design Techniques,” USA IEEE 2006 Custom Intergrated Circuits Conference.
[6] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[7] F. Ellinger, “26-42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522 – 528, Mar. 2004.
[8] R. E. Lehmann and D. D. Heston, “X-Band Monolithic Series Feedback LNA,” IEEE Tran. Microw. Theory Tech., Vol. 33, no. 12, pp. 1560 – 1566, Dec. 1985.
[9] F. Bruccoleri, E.A.M. Klumperink and B. Nauta, “Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise Canceling,” IEEE J. Solid-State Circuits, vol. 39, pp. 275–282, Feb. 2004.
[10] T. Song, S. Ko, D. H. Cho, H. S. Oh, C. Chung, and E. Yoon, “A 5GHz Transformer-Coupled CMOS VCO Using Bias-Level Shifting Technique,” IEEE RFIC Symp., pp. 127-130, Jun. 2004.
[11] C. R. C. De Ranter and M. S. J. Steyaert, “A 0.25μm CMOS 17 GHz VCO,” IEEE J. Solid-State Circuits, vol 23, pp. 370-371, Feb. 2001.
[12] S. Ko, J. G. Kim, T. Song, E. Yoon and S. Hong, “20 GHz Integrated CMOS Frequency Sources with a Quadrature VCO using Transformers,” IEEE RFIC Symp., pp. 269-272, Jun. 2004.
[13] T. P. Wang, R. C. Liu, H. Y. Chang, L. H. Lu, and H. Wang, “A 22 GHz Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 859–861, Dec. 2005.
[14] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp.673–675, Oct. 2005.
[15] W. L. Ng. Alan, G. C. T. Leung, K. C. Kwok, L. K. L. Lincoln, H. C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18μm CMOS,” IEEE J. Solid-State Circuits, vol 8, pp. 158-160, Feb. 2005.
[16] C. Cao, Y. Ding , X. Yang , J. J. Lin, H. T. Wu, A. K. Verma, J. Lin, F. Martin, and K. O. Kenneth, “A 24-GHz Transmitter With On-Chip Dipole Antenna in 0.13μm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 6, Jun. 2008.
[17] T. S. D. Cheung and J. R. Long, “Shielded passive devices for silicon based monolithic microwave and millimeter-wave integrated circuits,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1183-1200, May 2006.
[18] P. J. Riemer, J. F. Prairie, B. R. Buhrow, C. L. Chen, C. L. Keast, P. W. Wyatt, B. A. Randall, B. K. Gilbert, E. S Daniel, “Ka-Band (35 GHz) Low-noise 180nm SOI CMOS Amplifier,” IEEE International SOI Conference, pp. 125-126, Oct. 2006.
[19] H. Y. Liao, K. C. Liang, H. K. Chiou, “A Compact and Low Power Consumption K-band Differential Low Noise Amplifier Design Using Transformer Feedback Technique,”Asia-Pacific Microw. Conf., pp. 1-4, Dec. 2007.
[20] S. C. Shin, S. F. Lai, K. Y. Lin, M. D. Tsai, H. Wang, C. S. Chang, Y. C. Tsai, “18-26 GHz low-noise amplifiers using 130 and 90nm bulk CMOS technologies,” IEEE RFIC Symposium 2005, pp. 47-50, Jun. 2005.
[21] H. L. Tu, T. Y. Yang, K. H. Liang and H. K. Chiou, “A 30 GHz 10 dB low noise amplifier using standard 0.18μm CMOS Tech.,” Microw. Opt. Tech. Lett., vol. 49, no. 3, Mar. 2007, pp. 647~649.
[22] W. M. Chang, Z. H. Hsiung and C. F. Jou, “Ka-band 0.18μm CMOS low noise amplifier with 5.2 dB noise figure,” Microw. Opt. Tech. Lett., vol. 49, no. 5, May 2007, pp. 1187~1189.
[23] C. C. Chen, Y. S. Lin, J. F. Chang and J. H. Lee, “A K-Band low noise amplifier using shunt RC feedback and series inductive peaking techniques,” Microw. Opt. Tech. Lett., vol. 50, No. 5, May 2008, pp. 1148~1151.
[24] A. A. Eldek, A. Z. Elsherbeni and C. E. Smith, “Wide-band modified printed bow-tie antenna with single and dual polarization for C and X-band applications,” IEEE Trans. Antennas Propag., vol. 5, no. 9, pp3067-307, Sep. 2005.
[25] G. Y. Chen and J. S. Sun, “A printed dipole antenna with microstrip tapered balun,” Microw. Opt. Tech. Lett.,vol. 40, no. 4, pp. 344-346, Feb. 2004.
[26] C. Y. Hang, W. R. Deal,Y. Qian and T. Itoh, “High – Efficiency push-pull power amplifer integrated with Quasi-Yagi antenna,”IEEE Trans. Microw. Theory Tech, vol. 49, no. 6, pp.1155-1161,Jun. 2001.
[27] W. R. Deal, N. Kaneda, J. Sor, Y. Qian and T. Itoh, “A new quasi-Yagi antenna for planar active antenna arrays,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 6, pp.910-918, Jun. 2000.
[28] P. R. Grajek, B. Schoenlinner and G. M. Rebeiz, “A 24 GHz High-Gian Yagi-Uda antenna array,” IEEE Trans. Antennas Propag.,vol. 52, pp. 1257-1261, May 2004.
[29] I. S. Chen, H. K. Chiou and N. W. Chen, “V-Band On Chip Diopole-Based Antenna,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct. 2009.
[30] C. A. Balans, Antenna Theory Analysis and Design, 3rd ed. New York:Wiley, 2005.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2010-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明