博碩士論文 975201056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:226 、訪客IP:3.12.136.218
姓名 林柏安(Po-an Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用覆晶技術之微波與毫米波積體電路
(Microwave and Millimeter Wave Integrated Circuits with Flip-chip Technique)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析★ 以標準CMOS製程實現之850 nm矽光檢測器
★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體
★ 雙閘極金氧半場效電晶體與電路應用★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析
★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析
★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討
★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體
★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析★ 氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文將覆晶技術(Flip-Chip)應用於幾個矽基微波電路中,為之後矽基微波電路的覆晶應用做初步的實現。第一個電路為覆晶式3.5 GHz Doherty功率放大器,此覆晶式Doherty放大器的組成是將電晶體部分覆晶至自己製作的被動元件上,藉由氧化鋁基板上高Q值的被動元件來提升整體放大器的效率。最後量測的結果,在輸出功率1-dB增益壓縮點提前6 dB處,有著20 %的功率增進效率表現。
第二個覆晶式電路為覆晶式W頻帶CMOS放大器,與先前的覆晶式Doherty電路不同,此覆晶式W頻帶CMOS放大器為直接覆晶製作完成的W頻帶CMOS放大器晶片於氧化鋁基板上,並在氧化鋁基板上加入覆晶轉接電路的設計。量測結果顯示透過適當的轉接電路設計,可以確實的補償覆晶凸塊的寄生效應對電路造成的影響。
最後一個電路為V頻帶的切換式天線陣列,採用巴勒矩陣的架構。其矩陣與天線陣列皆為氧化鋁基板上的被動元件所組成,透過耦合器與延遲線的設計來實現由巴勒矩陣的不同輸入端輸入,在輸出端會得到不同相位差的結果。目前只有製作被動元件的部分,之後會加入主動電路部分來完成整個覆晶式天線陣列的應用。
摘要(英) Two microwave integrated circuits (MICs) with flip-chip assembled are demonstrated in the master thesis. The first circuit is a 3.5 GHz Doherty power amplifier with flip-chip assembled. The flipped chip consists of just transistors. Passive elements are developed on Al2O3 ceramics for high Q factor. Efficiency of the PA can be improved by the high Q passive elements. Measured results show 20 % PAE at 6-dB back-off from OP1dB.
The second circuit is W-band CMOS power amplifier with flip-chip assembled. Different with the previous one, this flipped chip consists whole PA circuit. Besides, some transition network are made on Al2O3 ceramics. By appropriate transition network design, parasitics of the bump can be compensated.
Last circuit is V-band switching antenna array by the use of Bulter matrix. The matrix part and anntnna array are made on Al2O3 ceramics. By couplers and delay lines, output signals at output ports of Bulter matrix shows specific phase difference when the input signal is injected into different input ports. For future work, we will add active circuits to realize the switching antenna array with flip-chip assembled.
關鍵字(中) ★ 覆晶
★ 微波積體電路
關鍵字(英) ★ flip-chip
★ microwave integrated circuit
論文目次 目錄
摘要 IV
Abstract V
致謝 VI
圖目錄 IX
表目錄 XIII
第一章 導論 1
1.1電子封裝發展 1
1.2覆晶技術應用於微波積體電路的相關研究成果 3
1.3論文架構 3
第二章 覆晶技術與被動元件製作 5
2.1簡介 5
2.2覆晶凸塊製作 5
2.3覆晶凸塊等效電路模型 9
2.4被動元件設計與製作 12
2.4.1被動元件製作流程 12
2.4.2被動元件模擬與量測 16
2.5結論 20
第三章 覆晶式射頻Doherty功率放大器 21
3.1簡介 21
3.2 Doherty功率放大器工作原理[17][19] 21
3.3電路設計 24
3.3.1覆晶式單級放大器設計 25
3.3.2方向耦合器設計 29
3.3.3補償線(offset line)設計 30
3.3.4九十度延遲線設計 32
3.3.5四分之一波長阻抗轉換器設計 33
3.3.6整體覆晶式Doherty功率放大器設計 34
3.4結論 38
第四章 覆晶式W頻帶 CMOS放大器 39
4.1簡介 39
4.2覆晶轉接電路簡介 40
4.3覆晶式W頻帶CMOS放大器電路設計 41
4.3.1 W頻帶CMOS放大器電路架構 41
4.3.2覆晶轉接電路架構 43
4.3.3覆晶式電路模擬與量測 45
4.4結論 53
第五章 應用於V頻帶之切換式天線相位陣列 54
5.1簡介 54
5.2巴勒矩陣工作原理 55
5.3應用於V頻帶巴勒矩陣設計 58
5.3.1矩陣架構 58
5.3.2耦合器設計 60
5.3.3延遲線設計 62
5.3.4矩陣設計 62
5.3.5天線以及天線陣列設計 63
5.4巴勒矩陣實作與量測 66
5.5結論 71
第六章 結論 72
參考文獻 73
附錄A 口試問題回答 77
參考文獻 [1] E.M. Davis, W.E. Harding, R.S. Schwartz, and J.J. Corning, IBM J. Res. Develop., 1964
[2] J.H. Lau, McGraw-Hill, “Ball Grid Array Technology,” New York, 1995.
[3] Pat Thompson, “Chip Scale Packaging,” IEEE Spectrum, Aug. 1997.
[4] Advanced Electronic Packaging, Second Edition, Richard K. Ulrich and William D. Brown, 2006.
[5] Navas Khan, John H. Lau, “Development of 3-D Silicon Module With TSV for System in Packaging,” IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 1, Mar. 2010.
[6] Y. Arai, M. Sato, H.T. Yamada, T. Hamada, K. Nagai and H. I. Fujishiro, “60 GHz flip-chip assembled MIC design considering chip-substrate effect,” IEEE Trans. on Microwave Theory and Techniques, vol.45, pp. 2261-2266, Dec. 1997.
[7] T. Hirose K. Makiyama, K. Ono, T. M. Shimura, S. Aoki, Y. Ohashi, S. Yokokawa and Y. Watanabe, “ A flip-chip MMIC design with CPW technology in the W-band,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 525-528, June 1998.
[8] 劉佑安, “利用單石微波積體電路與覆晶技術製作之Ka頻段振盪器”, 碩士論文, 國立中央大學, 民國94年。
[9] Yumin Koh, Ungbi Son, Sangsub Song, and Kwang-Seok Seo, “A Micromachined Air-Cavity Oscillator for 94 GHz Applications,” International Conference on Solid State Devices and Materials, pp. 474-475, 2009.
[10] N. Tanzi, J. Dykstra and K. Hustchinson, “A 1-Watt Doubly Balanced 5GHz Flip-chip SiGe Power Amplifier,” RFIC Symposium, pp. 141–144, 2003.
[11] P.D. Tseng, , L.Y. Zhang, G.B. Gao, M.F. Chang and W.-K. Chen, “A Monolithic SiGe Power Amplifier for Dual-Mode (CDMA/AMPS) Cellular Handset Applications,” Proc. of Bipolar/BiCMOS Circuits and Tech. Meeting, pp. 153-156, 1999.
[12] M. Maiore, G. Berretta, G. Conti, E. Pirrone and C. Campisi. “A 63% PAE and 10:1 VSWR at 3.3V power amplifier in 0.25 mm SiGe BiCMOS for DCS and PCS applications,” Radio and Wireless Symposium, pp. 247-250, 2006.
[13] N.-H. Huynh, W. Heinrich, K. Hirche, W. Scholz, M. Warth and W. Ehrlinger, “Optimized flip-chip interconnect for 38GHz thin-film microstrip multichip modules,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 69-72, June 2004.
[14] S. Song, Y. Kim, J. Maeng, H. Lee, Y. Kwon and K.-S. Seo, “A millimeter-wave system-on-package technology using a thin-film substrate with a flip-chip interconnection,” IEEE Trans. on Advanced Packaging, vol. 32, pp. 101-108, Feb. 2009.
[15] Jerry Jordna, “Gold Stud Bumps in Flip-Chip Application”, IEEE International Electronics Manufacturing Technology Symposium, July 2002.
[16] C.-C. Lin, P.-C. Yeh, and H.-K. Chiou, “An evaluation of SiGe/Si HBT high efficiency power amplifiers for dynamic power control range application” Proc. of Circuits and System, Asia-Pacific conf. on., pp. 281-284, 2004.
[17] Bumman Kim, Jangheon Kim, Ildu Kim, and Jeonghyeon Cha, “The Doherty Power Amplifier,” IEEE Microwave Magazine, Oct. 2006.
[18] W.H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol. 24, no. 9, pp. 1163–1182, 1936.
[19] RF Power Amplifiers for Wireless Communications, S.C. Cripps, 1999.
[20] J.-H. Tasi, and T.-W. Huang, “A 38-46 GHz MMIC Doherty power amplifier using post-distortion linearization,” IEEE Microw. and Wireless Compon. Lett., vol. 17, no. 5, pp. 388-390, May 2007.
[21] C.-Y. Liu, T.-N. Luo, Yi-Jan Emery Chen and Deukhyoun Heo, “A 2.4 GHz CMOS Doherty Power Amplifier,” Microwave Symposium Digest, pp. 885-888, 2006.
[22] Daekyu Yu, Y.-W. Kim, Kichon Han, J.-H. Shin and Bumman Kim, “Fully integrated Doherty power amplifiers for 5 GHz wireless-LANs,” RFIC Symposium, pp. 141–144, 2006.
[23] A. Jentzsch, and W. Heinrich, “Optimization of flip-chip interconnects for millimeter-wave frequencies,” IEEE MTT-S Int. Symp. Dig., vol. 2, pp. 637-640, Jun. 1999.
[24] H. H. M. Ghouz, and E. B. El-Sharawy, “Finite-difference time-domain analysis of flip-chip interconnects with staggered bumps,” IEEE Trans. Microwave Theory Tech., vol. 44, no. 6, pp. 960-963, June 1996.
[25] W. Heinrich, A. Jentzsch, and H. Richter, “Flip-chip interconnects for frequencies up to W band,” IEEE Electronics Letters, vol. 37, no. 3, pp. 180-181, Feb. 2001.
[26] F. J. Schmuckle, A. Jentzsch, H. Oppermann, K. Riepe, W. Heinrich, “W-band flip-chip interconnects on thin-film substrate,” IEEE MTT-S Int. Symp. Dig., vol. 3, pp. 1393-1396, Jun. 2002.
[27] Y.-S. Jiang, J.-H. Tsai and H. Wang, “A 86 to 108 GHz amplifier in 90 nm CMOS,” IEEE Microwave Wireless Components Letter, vol.18, no.2, pp. 124-126, Feb. 2008.
[28] Y.-S. Jiang, J.-H. Tsai, and H. Wang, "A W-Band medium power amplifier in 90 nm CMOS,” IEEE Microwave Wireless Components Letter, vol.18, no.12, pp. 818-820, Dec. 2008.
[29] Phased Array Antennas, 2nd Edition, Robert C. Hansen, 2009.
[30] Che-Chung Kuo, Po-An Lin, Hsin-Chia Lu, Yu-Sian Jiang, Chia-Ming Liu,Yue-Ming Hsin and Huei Wang “W-band Flip-Chip Assembled CMOS Amplifier with Transition Compensation Network for SiP Integration,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 465-468, May 2010.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2010-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明