B i R21002 45 545 THEEBRANLRAL

A RMIELAR LS £om(—fgs) HE RMEBRREE: % > F 2 | B
ARTRLARE T E Ao —Ag4) ,
AFERS A E R COABARELEE () mHs

1. A data structure Node is defined as follows:

Struct Node{
int key; // the key value of the item
Struct Node *left;
Struct Node *right;

}

1.1 (8%) The data structure Node can be used to form a binary tree. Use pseudocode to design a function
Search that takes two arguments as the input--- a particular key value x and a pointer roo which points
to the root of a binary tree. Then, the program searches for x from root. If x is found, return a pointer
that points to the node; Otherwise, return Null.

1.2 (10%) The data structure Node can be used to create a graph that contains cycles. The following figure
shows a graph with a cycle 12> 1. Please use pseudo code to design a function IsCycleExist that
takes one argument as the input --- a pointer root which points to a node of a graph. The function
should return TRUE if a cycle is found, and return FALSE otherwise.

root | A

2. (5%) A small grid system consists of two identical machines, X and Y. A set of computing jobs, shown in ‘
the following table, are submitted to the system for parallel execution. Each job can be identified by its -
ID, required service time, and arrival time. Each machine can only handle one job at a time. The system
uses_a stack to handle a job of which the required service time is smaller than and equal to 4 seconds; it

uses a queue otherwise. If a job is waiting in a queue and another one is waiting in a stack, the job in the
stack is always selected for execution first.

What is the completion order of the jobs?

Job 1 2 3 4 5 6 7 8 9
Required ' '
service 3 4 8 7 4 4 4 7 4
time (Sec)
Arrival
t t+1 t+2 t+3 t+4 t+5 t+6 t+6 t+7
time (Sec)

3. A sequence of integers is listed as follows:
23456987

3.1 (5%) Illustrate the binary search tree after each insertion using the above sequence.
3.2 (5%) Illustrate the AVL tree after each insertion using the above sequence. [o<

ix,
=

2k ¥

P ARPI00P 4 B8+ 34 RA SRS

A ARTELAGELE RAoE(—&4) - B T EMeHaEE: £ L B ¥ 2 R
' RIS AR I EE L Aaa(—i4)
AHEREAHES xFERELRE (F) NHEE

4. Prove or disprove the followmg statements. Note that the functions should be positive function when # is
large enough. So be careful when you construct counter-examples.

4.1 (7%) fin) = O(g(n)) implies h(f(n)) = O(h(g(n))) if h(n) is an mcreasmg function (i.e., h(ny) > h(ny) for

Vi, > nz)

4.2 (1%) f{n) + g(n) = Omax{f(n), g(n)}).

Let V'be a set of n pomts in the plane. Let G = (¥, E) be the complete graph over V, and the weight of
each edge e € E is the length of this edge. The Buclidean Traveling Salesman Problem (ETSP)of Vis to
find the cycle C” such that C” visits each node exactly once, and it has the minimum weight among all
such cycles. Let 7" be a minimum spanning tree of G

5.1 (10%) Show that &(T") < a(C”,), where w(X) is the we1ght of a subgraph X of G.
52 (10%) Given T" , design an algorithm to compute a cycle C that is a 2-approximation of the optimal
ETSP cycle C". Namely, o(C") < a(C) <2w(c) (Hint: first show that a(T") <a(C") <2e(T").)

Below are the inputs of an instance of the 0/1 knapsack problem with n=5 items and the knapsack
capacity M=38. Note that P; is the profit of item i and W; is the weight of item i, i=1,...,5. The 0/1
knapsack problem is to maximize the total profit of items that are wholly put mto/ﬂ;e knapsack under the
constraint that their total weight should not exceed the knapsack capacity.

e ? R

. - 7
! 1 2 3 4 5 : /] ,’

). s : S - .
P, S 10 4 5 6 | : // 3} .
W, 10 19 8 10 12 S {’

\ ‘/ /

P/W, 2 P, /Wi,,) ' /

The problem can be solved by the branch-and-bound strategy on the basis of the best-first search scheme
by deriving the lower bound and upper bound for each node in the search tree.

6.1 (12%) Derive the upper bound and the 1ower bound for the root node and explam how you obtain the
bounds. : ‘ ‘

6.2 (6%) Explain how the bounds can be used in the branch-and-bound strategy. (6%)

' 7. Given achain Ay, Ay, ..., A, ofn matnces where matrix A; has dimension d;.;xd; for i=1,. .-,n, the
matrix-chain multiplication problem is to find a way to fully parenthesize the product ArAz An so that
the number of scalar multiplications required to compute the product is minimized. A product of matrices

 is fully parenthesized if it is either a single matrix, or a product of two fully parenthesized matrix product,
surrounded by parentheses. For example, A1AzA;, where A is a 10x100 matrix, A, is a 100x5 matrix
and Aj; is a 5x50 matrix, is optimally and fully parenthesized as ((A;Az)As), which requires
10x100x5+10x5x50=7500 scalar multiplications.
7.1 (10%) Write an algorithm to take a chain Ay, Ay, ..., A, of n matrices as inputs and to output the

minimized number of scalar multiplications required to compute the product of the n matrices on the
basis of the dynamic programming strategy.

7 2 (5%) Use your algonthm to calculate the minimized number of scalar multiplications for computing the
product A1A2A3A4As, where A is a 3x100 matrrx A; is a 100xS matrix, A3 1s a 5x50 matrix, Asis a

50%20 and Asis a 20x6 matrix.
% ’5 H A ’EE’% |

