參考文獻 |
[1] O. S. Heavens, Optical Properties of Thin Solid Films, p. 51, New York: Dover Publications, Inc., 1991.
[2] J. K. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, H. Kim, C. Sone, and Y. Park, “Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars”, Appl. Phys. Lett., vol. 93, p. 221111, Dec. 2008.
[3] J. S. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual”, Proc. London Math. Soc., Vol. 11, pp. 51–56, Feb. 1880.
[4] W. H. Southwell, “Gradient-index antireflection coatings”, Opt. Lett., vol. 8, no. 11, pp. 584-586, Nov. 1983.
[5] E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures”, J. Opt. Soc. Am. A, vol. 12, no. 2, pp. 333-339, Feb. 1995.
[6] J. Zhao, and M. A. Green, “Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells”, IEEE Trans. Electron Devices , vol. 38, no. 8, pp. 1925-1934, Aug. 1991.
[7] J. Zhao, A. Wang, P. Campbell, and M. A. Green, “22.7% efficient PERL silicon solar cell module with a textured front surface”, IEEE 26th PVSC, Sep. 30-Oct. 3,1997, pp. 1133-1136.
[8] R. R. Bilyalov, L. Stalmans, L. Schirone, and Claude L´evy-Cl´ement, “Use of Porous Silicon Antireflection Coating in Multicrystalline Silicon Solar Cell Processing”, IEEE Trans. Electron Devices, vol. 46, no. 10, pp. 2035-2040, Oct. 1999.
[9] P. Charoensirithavorn and S. Yoshikawa, “Dye-sensitized Solar Cell Based on ZnO Nanorod Arrays”, The 2nd Joint Int. Conf. on “Sustainable Energy and Environment”, Nov. 2006.
[10] N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells”, IEEE Trans. Electron Devices, vol. 54, no. 8, pp. 1926-1933, Aug. 2007.
[11] W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells”, J. Appl. Phys., vol. 102, p. 103105-1, Nov. 2007.
[12] S. C. Kim and I. Sohn, “Simulation of Energy Conversion Efficiency of a Solar Cell with Gratings”, J. Opt. Soc. Korea, vol. 14, no. 2, pp. 142-145, Jun. 2010.
[13] C.-H. Sun, W.-L. Min, N. C. Linn, and P. Jiang, B. Jiang, “Templated fabrication of large area subwavelength antireflection gratings on silicon”, Appl. Phys. Lett., vol. 91, p. 231105, Dec. 2007.
[14] Y. Zhao and J. Wang, “Colloidal subwavelength nanostructures for antireflection optical coatings”, Opt. Lett., vol. 30, no. 14, pp. 1885-1887, Jul. 2005.
[15] Y.-R. Lin, H.-P. Wang, C.-A. Lin, and J.-H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings”, J. Appl. Phys., vol. 106, pp. 114310, Dec. 2009.
[16] U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers”, Opt. Express, vol. 17, no. 11, pp. 8704-8708, May 2009.
[17] J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection”, Nature Photon., vol. 1, pp. 176-179, Mar. 2007.
[18] M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization”, Opt. Lett., vol. 33, no. 21, pp. 2527-2529, Nov. 2008.
[19] S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics”, Appl. Phys. Lett., vol. 95, pp. 251108, Dec. 2008.
[20] M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm”, Opt. Express, vol. 16, no. 8, pp. 5290-5298, Apr. 2008.
[21] C.-H. Chang, L. Waller, and G. Barbastathis, “Design and optimization of broadband wide-angle antireflection structures for binary diffractive optics”, Opt. Lett., vol. 35, no. 7, pp. 907-909, Apr. 2010.
[22] H. Elfström, T. Vallius, M. Kuittinen, J. Turunen, T. Clausnitzer, and E.-B. Kley, “Diffractive elements with novel antireflection film stacks” Opt. Express, vol. 12, no. 25, pp.6385-6390, Dec 2004.
[23] Y.-J. Chang and Y.-T. Chen, “Broadband omnidirectional antireflection coatings for metal-backed solar cells optimized using simulated annealing algorithm incorporated with solar spectrum”, Opt. Express, vol. 19, no. S4,pp. A875-A887, Jul. 2011.
[24] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by Simulated Annealing”, Science, Vol. 220, No. 4598, pp. 671-680, May 1983.
[25] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., vol. 21, no. 6, pp. 1087-1092, Jun. 1953.
[26] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm”, ACM Trans. on Math. Soft., vol. 13, no. 3, pp. 262-280, Sep. 1987.
[27] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, Chapter 5.2, Dordrecht, Holland: D. Reidel Publishing Company, 1987.
[28] P. J. M. van Laarhoven and E. H. L. Aarts, “A general approach to combinatorial optimization problems”, Philips J. Res., Vol. 40, No. 4, pp. 193-226, 1985.
[29] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and Applications, pp. 61-62, Dordrecht, Holland: D. Reidel Publishing Company, 1987.
[30] O. S. Heavens, Optical Properties of Thin Solid Films, pp. 55-62, New York: Dover Publications, Inc..
[31] M. Fox, Optical Properties of Solids, New York : Oxford University Press.
[32] E. D. Palik, Handbook of Optical Constants of Solids, USA: Academic Press Inc., 1985.
[33] R. E. Bird, R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, “Solar spectral measurements in the terrestrial environment”, Appl. Opt., vol. 21, no. 8, pp. 1430-1436, Apr. 1982.
[34] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency”, Prog. Photovoltaic Res. Appl., vol. 12, pp. :553–558, Aug. 2004.
[35] 顧鴻濤, 太陽能電池元件導論 - 材料、元件、製程、系統, 全威圖書有限公司, 2009.
[36] T.Miyano, R. Hashimoto, Y. Kanda, T. Mise, and T. Nakada, “Bifacial CIGS Thin Film Solar Cells Using TCO Back Contacts”, in Technical Digest Int. PVSEC-17, Fukuoda, Japan, 2007.
[37] Y. Hamakawa, Thin-Film Solar Cells: Next Generation Photovoltaics and Its Applications, Germany: Springer, 2004.
[38] M. Pagliaro, G. Palmisano, R. Ciriminna, Flexible Solar Cells, Germany: Weinheim, 2008.
[39] S. Ishizuka, H. Shibata, A. Yamada, P. Fons, K. Sakurai, K. Matsubara, and S. Niki, “Growth of polycrystalline Cu(In,Ga)Se2 thin films using a radio frequency-cracked Se-radical beam source and application for photovoltaic devices” Appl. Phys. Lett., vol. 91, p. 041902, Jul. 2007.
[40] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, and S. Niki, “Alkali incorporation control in Cu(In,Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency”, Appl. Phys. Lett., vol. 93, pp. 124105, Sep. 2008.
[41] Z. Qiao, C. Agashe, and D. Mergel, “Dielectric modeling of transmittance spectra of thin ZnO:Al films”, Thin Solid Films 496, pp. 520 – 525, Sep. 2005.
[42] J. Li, J. Chen, M. N. Sestak, C. Thornberry, and R. W. Collins, “Spectroscopic ellipsometry studies of thin film CdTe and CdS: Foom dielectric function to solar cell structures”, pp. 001982- 001987, 34th IEEE Photovoltaic Specialists Conf. PVSC, 2009.
[43] P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, “Optical characterization of CuIn1-xGaxSe2 alloy thin films by spectroscopic ellipsometry”, J. Appl. Phys, vol. 94, no. 2, pp. 879-888, Jul. 2003.
[44] R. Hull, R. M. Osgood, J. Parisi H. Warlimont, Transparent Conductive Zinc Oxide - Basics and Applications in Thin Film Solar Cells, Berlin: Springer, 2004.
[45] D. Dubreuil, J.-P. Ganne, G. Berginc, and F. Terracher, “Optical and electrical properties between 0.4 and 12 μm for Sn-doped In2O3 films by pulsed laser deposition and cathode sputtering”, Appl. Opt., vol. 46, no. 23, p. 5709, Aug. 2007.
[46] R. E. I. Schropp, and M. Zeman, “New Developments in Amorphous Thin-Film Silicon Solar Cells”, IEEE Trans. Electron Devices, vol. 46, no. 10, pp. 2086-2092, Oct. 1999.
[47] T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Optimization of amorphous silicon thin film solar cells for flexible photovoltaics”, J. Appl. Phys., Vol. 103, p. 114509, Jun. 2008.
[48] P. Obermeyer, C. Haase, and H. Stiebig, “Advanced light trapping management by diffractive interlayer for thin-film silicon solar cells”, Appl. Phys. Lett., vol. 92, p. 181102, May 2008.
[49] T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Flexible micromorph tandem a-Si/_c-Si solar cells”, J. Appl. Phys., vol. 107, p. 014507, Jan. 2010.
[50] S.-D. Mo, W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anattase, and brookite”, Phys. Rev. B, vol. 51, no. 19, pp. 13023-13032, May 1995.
|