博碩士論文 986201018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:140 、訪客IP:18.217.189.152
姓名 巫佳玲(Chia-Ling Wu)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 利用WRF 3DVAR與EAKF探討GPSRO資料同化對莫拉克颱風模擬之影響
(Impact of GPSRO Data Assimilation with WRF 3DVAR and EAKF on the Simulation of Typhoon Morakot(2009))
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統觀測資料大部分集中於陸地,故可藉助雷達、衛星和飛機觀測來彌補資料稀少的海洋觀測之不足。本研究利用WRF之三維變分資料同化系統(3DVAR)和系集調整卡爾曼濾波器(EAKF)同化FORMOSAT-3 GPSRO觀測和GTS資料,針對2009年侵台的莫拉克颱風探討GPSRO資料在不同資料同化系統下對颱風預報路徑、降水、颱風結構及環境場等之影響。
本研究四個實驗組名稱為GTS、GPS、GTSe及GPSe,前兩個使用3DVAR同化GTS資料和GPSRO+GTS資料,後兩個實驗和前兩個實驗之設計相同,但使用EAKF同化系統。由11個資料同化預報週期的平均路徑誤差顯示GPS實驗在預報前24小時的平均路徑誤差比GTS實驗小。EAKF無論有無同化GPSRO觀測在預報48小時內的平均路徑預報皆比3DVAR好。將重力位高度、溫度、濕度和風場的預報與全球分析場和探空觀測比較發現使用EAKF同化系統的RMSE比3DVAR大,推測原因可能為GPSRO觀測資料太少及模式模擬範圍太小,造成分析場與預報場和真實大氣差異較大。降雨得分方面,對3DVAR之同化系統而言,GTS同化對中雨之00小時至24小時之預報較好;同化GPS之預報,大雨的ETS得分比GTS高。若使用EAKF同化GTS之GTSe實驗在大豪雨與超大豪雨得分比較高,24-48小時之累積降水預報,以EAKF同化GPSRO之GPSe實驗的表現明顯比其他組實驗好。
將預報與觀測24小時累積降水比較,發現利用3DVAR同化之實驗GPS和GTS之實驗能提早12小時預報到台灣西南部強降水,而使用EAKF實驗則可提早30小時。使用EAKF同化系統時,GPSRO增量大部分都是貢獻在颱風環流,對颱風結構有正的作用,因此雖處於較不利的環境仍能預報得到較小的路徑誤差、較好的降水預報及颱風結構。由深層大氣的駛流分析得知3DVAR預報的颱風路徑通常在最佳路徑的右側、EAKF在最佳路徑的左側,原因為3DVAR的東風駛流較快減弱加上南風增強,造成颱風較快往北移,預報路徑就在最佳路徑的右側,EAKF則是駛引的東風維持較久,把颱風往西帶後再北轉,因此得到的預報路徑都在最佳路徑左側。比較3小時累積降水時間序列分佈可看到使用3DVAR同化系統累積降水都只發生在受到地形抬升造成的山區降水,而EAKF除了也能預報到地形抬升所造成之降水外,也能預報到在外海和沿岸明顯的輻合降水外,EAKF模擬結果和觀測的降水分佈較為一致。
摘要(英) Most conventional observations are located on land, so observation over data-sparse ocean can be compensated by radar, statellite, and aircraft. In this study, the case of typhoon MORAKOT in 2009 is selected and FORMOSAT-3 GPSRO and GTS data assimilation with WRF 3DVAR and EAKF are utilized to investigate the impact of GPSRO data on forecasting of typhoon track, precipitation, typhoon structure and environment in different DA system.
Four experiments in the study are named GTS, GPS, GTSe and GPSe, the former 2 experiments assimilate GTS data only and both GPSRO and GTS data with 3DVAR respectively, the latter two experiments are same as the former 2 experiments but with EAKF. The mean track error in 11 DA forecast periods indicates the GPS experiment has smaller track error in first 24-hr forecast and the EAKF assmilation has the smallest track error at 36 hr forecast. Mean predicted track in 48 hours of the experiments of with EAKF DA system are better than 3DVAR no matter what data was assimilated. Compared forecasts of geopotential height, temperature, moisture and wind fields with sounding and global analysis field from NCEP GFS and ECMWF, using EAKF has larger RMSE than 3DVAR. The presumed reasons possibly result from lack of GPSRO data or small model domain which could cause significant difference between model analysis field (or prediction field) and true state. In the forecast rainfall skill of 3DVAR, GTS has higher skill over 1~50 mm.in the first 24 hours prediction. After assimilating GPSRO data, the skill of the GPS has larger ETS than the GTS at the the threshold of heavy rain. The GTSe experiment get larger skill when the accumulated rainfall is over 200 mm. The GPSe has better performance than the others in 24-48 hours forecast.
Compared predicted and observed 24-hr accumulated rainfall, the GPS and GTS experiment can predict heavy rain of southwestern Taiwan advanced by 12 hours, and EAKF can be advanced by 30 hours. Using EAKF DA system, the increment of GPSRO assimilation most contributed to typhoon circulation implying positive effect on typhoon structure. Although the environment is not favorable, it still has smaller track error, well rainfall forecast and typhoon structure simulation. Typhoon tracks of 3DVAR prediction always deviate to right-side of best track; however the EAKF predicting tracks deviate to the left. The steering flow of deep layer atmosphere in 3DVAR DA system reveals much weaker easterly and strong southerly resulted in typhoon moving northward rapidly, so the prediction tracks are on the right side. Strong easterly steering flow in EAKF system makes typhoon move westward, so the prediction tracks deflect to the left of best track. Time serie of 3-h accumulated rainfall indicate the 3DVAR predicted rainfall always happen in the mountain area. On the other hand, GPSe has captured convergence well occurred in mountains and coastal area, so rainfall occures in the offshore zone besides mountain. It is much better consistent with the observations.
關鍵字(中) ★ GPSRO
★ 系集調整卡爾曼濾波
★ 莫拉克颱風
關鍵字(英) ★ GPSRO
★ EAKF
★ Typhoon MORAKOT
論文目次 中文摘要………………………………………………………………………I.
英文摘要………………………………………………………………………III
誌謝……………………………………………………………………………V
目錄……………………………………………………………………………VI
表目錄………………………………………………………………………VIII
圖目錄………………………………………………………………………IX
第一章、 前言………………………………………………………………1
第二章、 資料來源與研究方法……………………………………………5
2.1 資料來源………………………………………………………………5
2.1.1 NCEP GFS資料…………………………………………………5
2.1.2中央氣象局提供的資料…………………………………………5
2.1.3 FORMOSAT-3 GPS RO資料……………………………………6
2.1.4 日本氣象廳提供的資料………………………………………7
2.2 模式模擬與實驗設計…………………………………………………7
2.2.1 WRF模式介紹…………………………………………………7
2.2.2 同化系統介紹…………………………………………………8
2.2.3 個案介紹………………………………………………………14
2.2.4 模式設定及實驗設計…………………………………………14
2.3 驗證方法………………………………………………………………16
2.3.1 高度、溫度、濕度以及風場的驗證…………………………16
2.3.2 降水驗證………………………………………………………17
第三章、 GPSRO資料同化對莫拉克颱風模擬之影響…………………19
3.1預報結果討論統計分析……………………………………………19
3.1.1颱風路徑預報………………………………………………19
3.1.2預報結果統計分析……………………………………………22
3.1.3 觀測資料影響半徑敏感度測試……………………………29
3.2同化GPS RO在 WRF 3DVAR與EAKF的效益…………………30
3.3不同同化系統造成的預報表現差異分析…………………………32
第四章、GPSRO同化對環境場、颱風環流與強降水模擬的影響……35
4.1同化GPSRO對環境場、颱風環流造成的差異……………………35
4.2探討颱風與台灣西南部強降水的差異…………………………38
第五章、結論與未來展望…………………………………………………41
參考文獻……………………………………………………………………44
附表……………………………………………………………………………48
附圖……………………………………………………………………………50
參考文獻 吳家苓,2008:FORMOSAT-3 GPS RO 觀測資料之校驗及其對東亜地區梅雨季天氣分析與預報之系統性影響。國立中央大學,大氣物理研究所,碩士論文。
林昀瑱,劉輝,馮欽賜,「SoWMEX實驗EAKF系集資料同化系統初步分析」,中央氣象局天氣分析與預報研討會暨美華海洋大氣學會第五屆國際海洋大氣研討會,203-208頁,交通部中央氣象局,台北市,2010年,6月。
林昀瑱,「臺美氣象先進資料同化與預報模式系統發展技術合作協議-系集調整卡爾曼濾波(Ensemble Adjustment Kalman Filter」,出國報告,1-21頁,交通部中央氣象局,台北市,2008年,11月。
迮嘉欣,2009:資料同化對台灣地區颱風和梅雨模擬之影響。國立中央大學,大氣物理研究所,碩士論文。
洪于珺,2010:颱風辛樂克(2008) WRF 模擬及位渦反演之研究。國立中央大學,大氣物理研究所,碩士論文。
陳舒雅,2008:GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文。
連國淵,2009:颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學,大氣科學研究所,碩士論文。
莫拉克颱風科學小組,莫拉克颱風科學報告,1-189頁,行政院國家科學委員會,台北市,2010 年,3 月。
黃清勇與朱延祥,2004:FORMOSAT-3/COSMIC科學研究簡介。大氣科學,32,293-328。
黃清勇,2006:福爾摩沙衛星三號氣象科學研究簡介。物理雙月刊,28,910-923。
黃清勇、王潔如,2008:衛星遙測資料三維變分同化對於颱風模擬的影響,大氣科學,36,249-274。
黃國禎,2007:使用系集卡爾曼濾波器同化都卜勒雷達資料之研究。國立中央大學,大氣物理研究所,碩士論文。
曾忠一,2006:大氣科學中的反問題。 國立編譯館主編及出版,336頁。
葉天降、吳石吉、謝信良, 1998:台灣附近颱風路徑預報校驗與統計方法之應用。大氣科學,第26 期3 號,227-248。
Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1335.
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129.2884-2903.
Barker, D., W. Huang, Y.-R. Guo, A. J. Bourgeois,and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914.
Chen, S. Y., C.–Y. Huang, Y.-H. Kuo, Y.-R. Guo, and S. Sokolovskiy, 2001: Assimilation of GPS Refractivity from FORMOSAT-3/COSMIC Using a Nonlocal Operator with WRF 3DVAR and Its Impact on the Prediction of a Typhoon Event. Terr. Atmos. Ocean. Sci., 20, 133-154.
Chen, F., and J.Dudhia, 2001: Coupling and advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569-585.
Chou M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 3, 85pp.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statics. J. Geophys. Res., 99, 10,143-10,162.
Chien F.-C., and H.-C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot(2009). J. Geophys. Res., 116, 10,1-22.
Hong, S.-Y., and H.-L. Pan, 1996:Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339.
Hong, S.-Y., H.-M. H. Juang, and Q. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model, Mon. Wea. Rev., 126, 2621-2639.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004:A Revised Approach to Ice Microphysical Process for the Bulk Parameterization of Clouds and Precipitation. Mon.Wea. Rev., 132, 103-120.
Huang, C.-Y., Y.-H. Kuo, and S.-H. Chen, 2005: Improvements on Typhoon Forecast with Assimilated GPS Occultation Refractivity. Weather and Forecasting, 20, 931–953.
Kain, J. S., and J. M. Fritsch, 1990:A one-dimensional entraining/ detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.
Kain, J. S., and J. M. Fritsch, 1993:Convective parameterization for mesoscale models:The Kain-Fritsch scheme, The representation of cumulus convection in numerical models. K.A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.
Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82 , 507-531.
Kuo, Y.-H., X. Zou, and W. Huang, 1997: The impact of GPS data on the prediction of an extratropical cyclone: An observing system simulation experiment. J. Dyn. Atmos. Ocean, 27, 413–439.
Kuo Y.-H., H. Liu, Y. R. Guo, C. T. Terng, and Y. T. Lin, 2009:Impact of FORMOSAT-3/COSMIC Data on Typhoon and Mei-yu Prediction, Recent Progress in Atmospheric Sciences: Applications to the Asia-Pacific on,Editors:
K.N. Liou, M.D. Chou, and H.H. Hsu, World Scientific Press, pp.458-483.
Kursinki, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield, 1995: Observing tropospheric water vapor by radio occultation using the global positioning system. Geophys. Res. Letter, 22, 2365-2368.
Kurihara, Y.,M. A.Bender, R. J.Ross, 1993: An Initialization Scheme of Hurricane Models by Vortex Specification. Mon. Wea. Rev., 121, 2030-2045.
Liu, H., and X. Zou, 2003: Improvements to GPS radio occultation ray-tracing model and their impacts on assimilation of bending angle. J. Geophys. Res., 108 (D17), 4548, doi: 10.1029/2002JD003160.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997:Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102(D14), 16663-16682.
Monin,A.S. and A.M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci.,USSR, 151, 163-187 (in Russian)
Shieh, S.-L., S.-T. Wang, M.-D. Cheng, and T.-C. Yeh, 1998: Tropical cyclone tracks over Taiwan from 1897 to 1996 and their applications. Central Weather Bureau Tech. Rep.CWB86-1M-01, 497 pp.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570-575.
Thayer, D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9,803-807.
Ware, R., M. Exner, D. Feng, M. Gorbunov, K. Hardy, B. Herman, Y.-H. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. A. Anthes, S. Businger, and K. Trenberth, 1996: GPS sounding of the atmosphere from low earth orbit: Preliminary results. Bull. Amer. Meteor. Soc., 77, 19–40.
Wu, C.-C., H.-C. Kuo, H.-H. Hsu, and B. J.-D. Jou, 2000: Weather and climate research in Taiwan: Potential application of GPS/MET data. TAO, 11, 211-234.
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913–1924.
Yang, S.-C., M. CORAZZA, A. CARRASSI, E., KALNAY, and T. MIYOSHI,2009: Comparison of Local Ensemble Transform Kalman Filter, 3DVAR, and 4DVAR in a Quasigeostrophic Model. Mon. Wea. Rev., 137, 693-709.
Zhang, F. Q., Y. H. Weng, Y.-H. Kuo, J. S. Whitaker, and B. G. Xie, 2010: Predicting Typhoon Morakot’s Catastrophic Rainfall with a Convection-Permitting Mesoscale Ensemble System. Weather and Forecasting, 25,1816-1825.
Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229-2249.
指導教授 林沛練(Pay-Liam Lin) 審核日期 2011-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明