博碩士論文 946402003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.14.128.118
姓名 顏銀桐(Yin-Tung Yen)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 台灣地區有限斷層錯動量分佈尺度分析及模擬
(Simulation and Source Scaling of Finite-Fault Slip Distribution for Taiwan Region)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 震源尺度,即震源參數隨著地震大小變化之間的關係,從1970年代起直至目前仍持續地進行研究,除了探索震源參數隨地震大小是否存在自我相似尺度關係外,也建立了各種震源參數隨著地震大小變化之經驗關係式。一般而言,從地震工程的研究領域地震災害度分析上,不論定率法或是機率法,皆需要估算特定區域未來發生最大地震的潛力,而特地斷層所可能擁有的斷層參數大小則為最大地震災害度分析預估所必須採用之重要參數。此外,時間序列強地動的數值預估的研究上也需要一開始假設其可能之斷層尺度及滑移量。綜觀上述,震源尺度關係分析之研究成果不僅於地震學,且於工程地震學後續研究探討和應用皆為重要角色。
本研究專門除了收集並分析地震矩規模介於4.6至8.9地震之有限斷層錯動量分佈模型(slip model),而包含斷層長(fault length)、斷層寬(fault width)及平均滑移量(mean slip)。這些震源參數可由波形逆推求得之有限斷層錯動量分佈模型上取得,接而進一步探討震源尺度關係及檢驗地震自我相似性。規模小於7以下地震主要為台灣碰撞造山帶地區地震,額外加入7個收集世界各地地震則讓整個尺度關係延伸至較大規模的地震。透過由強震波形資料或遠震波形資料所逆推得到的有限斷層錯動量分佈模型,由自我相關函數(autocorrelation function)推估其主要有效震源參數,包含有效斷層長,斷層寬及平均滑移量。本研究得到在震源參數對應與地震矩大小的尺度關係上,地震矩小於10^20Nm時有M0 ~ L^2的關係,而地震矩大於10^20Nm時則為M0 ~ L^3的關係,且這樣的關係在不同的震源機制得到類似結果。顯示小至中型地震不遵循假設應力降常數下自我相關尺度(self-similar scaling) 之震源尺度;反之,大地震卻仍遵循自我相關尺度。此外,進一步推估各個地震的應力降,顯示個別應力降存在明顯差異;然而,除了主要幾個中小型地震有著超過300 bar以上較大的應力降以外,其他地震之應力降主要介於10至100 bar之間。比較Shaw (2009)年所推導的地震規模與斷層面積關係式曲線,其中重要的孕震帶厚度(seismogenic thickness)因子假設35公里時,本研究所收集的資料落於10至100 bar的地震大致與預測曲線趨勢一致,而趨勢顯示第一個轉折於斷層面積1000平方公里,顯示在孕震厚度35公里之下,台灣地區最大可能的斷層破裂面積大小可達此值,而破裂超出這樣的斷層面積以上。
存在明顯較高應力降的地震發生位置主要皆為座落於台灣西部麓山帶的盲斷層(blind fault),這些地震所紀錄到最大地表加速度(peak ground acceleration,PGA)於先前研究考慮之強地動衰減式所預估的預測值比較,明顯地存在有較高的PGA。透過經驗格林函數法推估強地動產生區域範圍(strong motion generation area,SMGA)重新估算應力降明顯較高之地震,得到其地震之強地動產生區域較小,亦即錯動量範圍較小。採用一個規模類似的地震同樣求取強地動產生區域則有著較大的面積,而不同的面積存在同樣的地震矩造成兩個地震應力降存在超過200 bar這樣一定的差異,間接證明了特定地震有著明顯較高應力降的情形的確存在。而儘管相對較小規模的地震,較高的PGA可能會對鄰近震源區域之建築及人民造成直接的損毀及災害,因此,本研究建議應力降的因子也應該被考量在強地動推估之研究上。
摘要(英) Source scaling, the relation between source parameters earthquake size, has been explored the self-similarity relation or developed a series of empirical relationships from the beginning of 1970s. In general, an important requirement for probabilistic and deterministic analyses in seismic hazard of engineering seismology is to estimate a future earthquake potential in a specific region. The fault parameters (e.g. fault length, width and mean slip) generated by a particular fault or earthquake source related to the size of the largest earthquakes is often necessary. In addition, pre-setting source dimensions and slip over the fault are also necessary for numerical prediction of time history ground motion. This kind of studies, thus, not only focuses on scientific purposes for seismology but provides the implications and applications for engineering seismology.
Source parameters, including fault length, width and mean slip can be dug out from the finite-fault slip distribution inferred from waveform inversion. In this study, thus, we sorted and solved slip distribution models resolved from the period from 1993 to 2009 in Taiwan. We investigated the source scaling of earthquakes (Mw4.6~Mw7.7) from Taiwan orogenic belt, and made the global compilation of source parameter to discuss the scaling self-similarity. Finite-fault slip models (13 dip-slip and 7 strike-slip) using mainly from Taiwan dense strong motion and teleseismic data were utilized. Seven additional earthquakes (M>7) were included for further scaling discussion on large events. Considering the definitive effective length and width for the scaling study, we found M0~L^2 and M0~L^3 for the events less and larger than the seismic moment of 10^20 Nm, respectively, regardless the fault types, suggesting a non-self similar scaling for small to moderate events and a self-similar scaling for large events. Although the events showed the variation in stress drops, except three events with high stress drops, most of the events had the stress drops of 10-100 bars. The bilinear relation was well explained by the derived magnitude-area equation of Shaw (2009) while we considered only the events with the stress drops of 10-100 bars and the seismogenic thickness of 35 km. The bilinear feature of the regressed magnitude-area scaling appears at the ruptured area of about 1000 km^2, for our seismogenic thickness of 35 km. For the events having ruptured area larger than that, the amount of the average slip becomes proportional to the ruptured length.
The distinct high stress drops events from blind faults in the western foothill of Taiwan yield local high Peak Ground Acceleration (PGA) as we made the comparison to the Next Generation Attenuation (NGA) model. Further, we implemented strong motion waveform modeling with the empirical Green’s function method to assess the area of strong-motion generation for inspecting the existence of fact that two earthquakes with similar magnitude have significantly distinct stress drop. Two earthquakes with similar magnitude have ~180 and ~610 bars, respectively, indeed, suggesting that significant difference of stress drop was proved. Regardless the relative small in magnitudes of these events, the high PGA of these events will give the high regional seismic hazard potential, and, thus, required special attention for seismic hazard mitigation.
關鍵字(中) ★ 強地動模擬
★ 震源尺度關係
★ 有限斷層錯動量分佈
關鍵字(英) ★ strong-motion simulation
★ source scaling
★ finite-fault slip distribution
論文目次 摘 要.................................................................................................................. i
Abstract ...........................................................................................................iii
致 謝............................................................................................................... v
圖 目 ............................................................................................................viii
表 目 ............................................................................................................... x
第一章 緒論..................................................................................................... 1
1.1 研究動機及目的.............................................................................................. 1
1.2 本文範疇及內容.............................................................................................. 3
第二章研究方法............................................................................................. 6
2.1 遠震及近震理論地震波計算.......................................................................... 6
2.1.1 遠震理論地震波之計算.......................................................................... 6
2.1.2 強震理論地震波之計算........................................................................ 12
2.2 逆推方法...................................................................................................... 16
2.3 經驗理論函數地震波之計算........................................................................ 17
第三章台灣地區有限斷層錯動量分佈模型彙整及分析 .......................... 25
3.1 彙整前人逆推有限斷層錯動量分佈模型結果............................................ 25
3.1.1 1993/12/15 21:49 地震(大埔地震)...................................................... 25
3.1.2 1994/04/06 01:12 地震.............................................................................. 26
3.1.3 1994/06/05 01:09 地震(南澳地震)...................................................... 26
3.1.4 1995/07/14 16:52 地震.............................................................................. 27
3.1.5 1995/10/31 22:27 地震.............................................................................. 27
3.1.6 1998/07/17 04:51 地震(瑞里地震)...................................................... 28
3.1.7 1999/09/20 17:47 地震(集集地震)...................................................... 28
3.1.8 1999/09/20 - 1999/09/25 集集地震餘震群.............................................. 29
3.1.9 1999/10/22 嘉義地震................................................................................ 30
3.1.10 2003/06/09 01:52 地震............................................................................ 30
3.2 2006/12/26 屏東雙主震有限斷層錯動量分佈:遠震波形逆推................. 31
3.2.1 介紹.......................................................................................................... 31
3.2.2 資料、震源機制及方法.......................................................................... 32
3.2.3 結果.......................................................................................................... 33
3.2.3.1 1226 地震之空間錯動量分佈............................................................. 33
3.2.3.2 1234 地震之空間錯動量分佈............................................................. 35
3.2.4 討論.......................................................................................................... 35
3.2.5 結論.......................................................................................................... 39
3.3 2009/11/05 南投地震有限斷層錯動量分佈:強震波形逆推................... 39
3.3.1 介紹.......................................................................................................... 39
3.3.2 資料、震源機制及方法.......................................................................... 40
3.3.3 結果.......................................................................................................... 42
第四章地震源參數尺度分析....................................................................... 70
4.1 介紹................................................................................................................ 70
4.2 滑移模型之震源參數特徵化........................................................................ 71
4.3 震源尺度關係式............................................................................................ 73
4.4 討論................................................................................................................ 75
4.4.1 小地震到大地震的非線性尺度關係...................................................... 75
4.4.2 斷層長和寬與平均滑移量對於地震矩的迴歸公式.............................. 77
4.4.3 斷層面積於地震規模的尺度關係.......................................................... 77
4.4.4 應力降...................................................................................................... 79
4.4.5 應力降與強地動之間的關係.................................................................. 81
4.5 結論............................................................................................................... 82
第五章經驗格林函數之強地動模擬........................................................... 98
5.1 介紹................................................................................................................ 98
5.2 資料及方法.................................................................................................... 98
5.3 結果.............................................................................................................. 100
5.3.1 991022(m1)地震..................................................................................... 100
5.3.2 980717(m2)地震..................................................................................... 101
5.4 討論與結論.................................................................................................. 101
第六章討論與結論..................................................................................... 114
6.1 綜合討論...................................................................................................... 114
6.2 結論.............................................................................................................. 117
參考文獻....................................................................................................... 123
附錄 (A) ....................................................................................................... 131
參考文獻 Allmann, B. P., and P. M. Shearer, Global variations of stress drop for moderate to large earthquakes, J. Geophys. Res., 114, no. B01310, doi 10.1029/2008JB005821, 2009.
Ammon, C. J., C. Ji, H. K. Thio, D. Robinson, N. Sidao, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. Wald, Rupture process of the 2004 Sumatra–Andaman earthquake, Science 308, 1133–1139, doi 10.1126/science.1112260, 2005.
Antolik, M., and D. S. Dreger, Rupture process of the 26 January 2001Mw 7.6 Bhuj, India, earthquake from teleseismic broadband data, Bull. Seismol. Soc. Am., 93, 1235-1248, 2003.
Asano, K., T. Iwata, K. Irikura, Source characteristics of shallow intraslab earthquakes derived from strong-motion simulations, Earth Planets Space, 55, 5-8, 2003.
Astiz L. and H. Kanamori, An earthquake doublet in Ometepec, Guerrero, Mexico, Phys. Earth Planet. Int., 34, 24-45, 1984.
Boore, D. M., and G. M. Atkinson, Stochastic prediction of ground motion and spectral response parameters at hard-rock sites in eastern North America, Bull. Seismol. Soc. Am., 77, 440-467, 1987.
Bouchon, M., A simple method to calculate Green's functions for elastic layered media, Bull. Seismol. Soc. Am., 71, 959-971, 1981.
Bracewell, R. N., The Fourier Transform and Its Applications, McGraw-Hill, New York, 1986.
Brune, J. N., Tectonic stress and the spectra of seismic shear waves from earthquake, J. Geophys. Res., 75, 4997-5009, 1970.
Brune, J. N., Correction, J. Geophys. Res., 76, 5002, 1971.
Chen, K. C, B. S. Huang, K. L. Wen, H. C. Chiu, Y. T. Yeh, S. N. Cheng, H. Y. Peng, T. M. Chang, T. C. Shin, R. C. Shih and C. R. Lin, A study of aftershocks of the 17 July 1998 Ruey-Li, Chiayi earthquake, TAO, 1, 605-618, 1999.
Chen Y. G., Y. T. Kuo, Y. M. Wu, H. L. Chen, C. H. Chang, R. Y. Chen, P. W. Lo, K. E. Ching, and J. C. Lee, New seismogenic source and deep structures revealed by the 1999 Chia-yi earthquake sequence in southwestern Taiwan, Geophys. J. Int., 172, 1049-1054, 2008.
Carena, S., J. Suppe, and H. Kao, Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography, Geology., 30, 935–938, 2002.
Chi, W. C., D. Dreger, and A. Kaverina., Finite-source modeling of the 1999 Taiwan (Chi-Chi) earthquake derived from a dense strong-motion network, Bull. Seismol. Soc. Am., 91, 1144-1157, 2001.
Chi, W. C., and D. Dreger, Crustal deformation in Taiwan: Results from finite source inversions of six Mw > 5:8 Chi-Chi aftershocks, J. Geophys. Res., 109, no. B07305, doi 10.1029/2003JB002606, 2004.
Fletcher, J., J. Boatwright, L. Haar, T. Hanks, and A. McGarr, Source parameters for aftershocks of the Oroville, California, earthquake, Bull. Seismol. Soc. Am., 74, 1101-1123, 1984.
Futterman, W. I., Dispersive body waves, J. Geophys. Res., 67, 5279-5291, 1962
Gibwicz S. J. and S. Lasocki, Analysis of shallow and deep earthquake doublets in the Fiji-Tonga-Kermadec Region, Pure appl. geophys., 164, 53-74, 2007.
Hanks, T. C., and W. H. Bakun, A bilinear source-scaling model for M- log A observations of continental earthquakes, Bull. Seismol. Soc. Am., 92, 1841-1846, 2002.
Hanks, T. C., and W. H. Bakun, M-logA observations for recent large earthquakes, Bull. Seismol. Soc. Am., 98, 490-494, 2008.
Hardebeck, J. L., and A. Aron, Earthquake stress drops and inferred fault strength on the Hayward fault, east San Francisco Bay, California, Bull. Seismol. Soc. Am., 99, 1801-1814, 2009.
Hartzell, S. H. and T. H. Heaton, Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am., 73, 1553-1583, 1983.
Haskell, N. A., Radiation pattern of surface waves from point sources in a medium, Bull. Seismol. Soc. Am., 54, 377-393, 1964.
Hartzell, S. H., Earthquake aftershocks as Green's functions, Geophys.Res. Lett., 5, 1-4, 1978.
Hartzell S. H. and T. H. Heaton, Rupture history of the 1984 Mogran Hill, California, earthquake from the inversion of strong motion records, Bull. Seismol. Soc. Am., 76, 649-674, 1986.
Heaton, T. H., The 1971 San Fernando earthquake: a double event? Bull. Seismol. Soc. Am., 72, 2037-2062, 1982.
Heaton, T. H., Generalized ray method of strong ground motion, PhD Thesis, CIT, 1978.
Harkrider, D. G., Potentials and Displacements for Two Theoretical Seismic Sources, Geophys. J. R. Astr. Soc., 47, 97-133, 1976.
Helmberger, D. V., The crust-mantle transition in the Bering Sea, Bull. Seismol. Soc. Am., 58, 179-214, 1968.
Helmberger, D. V., Generalized ray theory for shear dislocations, Bull. Seismol. Soc. Am., 64, 45-64, 1974.
Helmberger, D. V. and D. G. Harkrider, Modeling earthquakes with Generalized Ray Theory, in Modern Problems in Elastic Wave Propagation, Miklowitz J. Achenbach J., Editors John Wiley and Sons, New York, 499-518, 1978.
Hoop, A. T. de, Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, Thesis, 1958.
Hu, J. C., J. Angelier, and S. B. Yu, An interpretation of the active deformation of southern Taiwan based on numerical simulation and GPS studies, Tectonophysics 274, 145-169, 1997.
Ide, S., M. Takeo, Y. Yoshida, Source process of the 1995 Kobe earthquake: Determination of spatio-temporal slip distribution by Bayesian modeling, Bull. Seismol. Soc. Am., 86, 547-566, 1996.
Ikeura, T. and M. Takemura, Scaling relation of source spectra as a basis of a semi-empirical method for synthesizing strong ground motions due to heterogeneous faulting, Zishin, Set. II, (J. Seism. Soc. Japan) 43, 483-492 (in Japanese with English abstract), 1990.
Irikura, K., Prediction of strong acceleration motion using empirical Green's function, Proc. 7th Japan Earthquake Symp., 151-156, 1986.
Irikura, K., and H. Miyake, Recipe for Predicting Strong Ground Motion from Crustal Earthquake Scenarios, Pure and Applied Geophysics, 1-20, 2010.
Ji, C., Preliminary result of the May 12, 2008 Mw 7.97 Sichuan earthquake,http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/2008/05/12/ShiChuan.html (last accessed 1 June 2011), 2008.
Shao G., X. Li, C. Ji, and T. Maeda, Preliminary result of the March 11, 2011 Mw9.1Sichuanearthquake, http://www.geol.ucsb.edu/faculty/ji/
big_earthquakes/2011/03/0311_v3/Honshu.html (last accessed 1 June 2011), 2011.
Kamae, K., and K. Irikura, Source model of the 1995 Hyogo-ken Nanbu earthquake and simulation of near-source ground motion, Bull. Seismol. Soc. Am., 88, 400-412, 1998.
Kanamori, H. and D. L. Anderson, Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am., 65, 1073-1095, 1975.
Kanamori, H., J. Mori, and T. H. Heaton, The 3 December 1988, Pasadena earthquake (ML =4.9) recorded with the very broadband system in Pasadena, Bull. Seismol. Soc. Am., 80, 483-487, 1990.
Kanamori, H., J. Mori, E. Hauksson, T. Heaton, L. K. Hutton, and L. M. Jones, Determination of earthquake energy released and ML using Terrascope, Bull. Seismol. Soc. Am., 83, 330-346, 1993.
Kagan, Y. Y. and D. D. Jacson, Worldwide doublets of large shallow earthquakes, Bull. Seismol. Soc. Am., 89, 1147-1155, 1999.
Kennett, L. N. and N. J. Kerry, Seismic waves in a stratified half-space, Geophys. J. R. Astr.Soc., 57, 557-583, 1979.
Kikuchi, M. and Y. Fukao, Inversion of long-period P-waves from great earthquakes a long subduction zones, Tectonophysics, 144, 231-247, 1987.
Kimura, T. and Y. Kakehi, Rupture Process of the 2001 Hyogo-ken Hokubu, Japan, Earthquake (Mw 5.2) and Comparison between the Aftershock Activity and the Static Stress Changes, Bull. Seismol. Soc. Am., 95, 145-158, 2005.
Johnson, K. M., Y. J. Hsu, P. Segall, and S. B. Yu, Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophys. Res. Lett., 28, 2285-2288, 2001..
Lay, T. and H. Kanamori, Earthquake doublets in the Solomon Islands, Phys. Earth Planet. Int., 21, 283-304, 1980.
Lay, T., and T. C. Wallace, Modern global seismology. Academic Press, 114 pp, 1995.
Lay, T., H. Kanamori, C. J. Ammon, A. R. Hutko, K. Furlong, and L. Rivera The 2006-2007 Kuril Islands great earthquake sequence, J. Geophys. Res., 114, B11308, doi:10.1029/2008JB006280, 2009.
Langston, C. A. and D. V. Helmberger, A procedure for modeling shallow dislocation sources, Geophys. J., 42, 117-130, 1975.
Langston, C. A., The February 9, 1971 San Fernando earthquake: A study of source finiteness in teleseismic body wave, Bull. Seismol. Soc. Am., 68, 1-29, 1978.
Lee, C. T., and B. R. Tsai, Mapping Vs30 in Taiwan, TAO, 19, 671-682, 2008.
Lee, S. J. and K. F. Ma, Rupture process of the 1999 Chi-Chi, Taiwan, earthquake from the Inversion of teleseismic data, TAO, 11, 591-608, 2000.
Lee, S. J., W. T. Liang, C. C. B Yang and B. S. Huang, Source mechanism and rupture process of the Dec. 26th, 2006 PingTung Earthquake, TAO, 19, 555-565, 2008.
Lin C. H., Y. H. Yeh, K. J. Chen and H. C. Pu, Twin Earthquake Sequences: Evidence of Static Triggering in the Strong Convergent Zones of Taiwan, TAO, 19, 589-594, 2008.
Liu K. S., T. C. Shin and Y. B. Tsai, A free-field strong motion network in Taiwan: TSMIP, TAO, 10, 377-396, 1999.
Liu, K. S., and Y. B. Tsai, Attenuation relationships of peak ground acceleration and velocity for crustal earthquakes in Taiwan, Bull. Seismol. Soc. Am., 95, 1045-1058, 2005.
Ma, K. F., T. R. A. Song, S. J. Lee, and H. I. Wu., Spatial slip distribution of the September 20, 1999, Chi-Chi, Taiwan, earthquake (Mw7.6) - Inverted from teleseismic data, Geophys. Res. Lett., 27, 3417-3420, 2000.
Ma, K. F., and H. Kanamori, Broadband waveform observation of the 28 June 1991 Sierra Madre earthquake sequence (ML=5.8), Bull. Seismol. Soc. Am., 84, 1725-1738, 1994.
Ma, K. F., J. Mori, S. J. Lee, and S. B. Yu, Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 1069-1087, 2001.
Ma, K. F., and H. Y. Wu, Quick slip distribution determination of moderate to large inland earthquakes using near-source strong motion waveforms, Earthq. Eng. Eng. Seismol., 3, 1-10, 2001.
Mai, P. M., and G. C. Beroza, Source scaling properties from finite-fault-rupture models, Bull. Seismol. Soc. Am., 90, 604-615, 2000.
Manighetti, I., M. Campillo, S. Bouley, and F. Cotton, Earthquake scaling, fault segmentation, and structural maturity, Earth Planet. Sci. Lett., 253, 429-438, 2007.
Mendoza, C. and S. H. Hartzell, Inversion for slip distribution using teleseismic P waveforms: North Plam Springs, Borah Peak, and Michoacan Earthquakes, Bull. Seismol. Soc. Am., 78, 1092-1111, 1988.
Mendoza, C., and S. H. Hartzell, Slip distribution of the 19 September 1985 Michoacan, Mexico, earthquake: Near-source and teleseismic constraints, Bull. Seismol. Soc. Am., 79, 655-669, 1989
Mendoza, C., Finite-fault analysis of the 14 March 1979 Petalan, Mexico, earthquake using teleseismic P waveforms, Geophys. J. Int., 121, 675-683, 1995.
Mendoza, C. and S. Hartzell, Fault-slip distribution of the 1995 Colima-Jalisco, Mexico, earthquake, Bull. Seismol. Soc. Am., 89, 1338-1344, 1999.
Miyake, H., T. Iwata, and K. Irikura, Estimation of rupture propagation direction and strong motion generation area from azimuth and distance dependence of source amplitude spectra, Geophys. Res. Lett., 28, 2727-2730, 2001.
Miyake, H., T. Iwata, K. Irikura, Source Characterization for Broadband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area, Bull. Seismol. Soc. Am., 93, 2531-2545, 2003.
Nadeau, R. M., and L. R. Johnson, Seismological studies at Parkfield VI: Moment release rates and estimates of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Am., 88, 790-814, 1998.
Pacheco, J. F., C. H. Scholz, and L. R. Sykes, Changes in frequency size relationship from small to large earthquakes, Nature, 355, 1-73, 1992.
Pegler, G., and S. Das, Analysis of the relationship between seismic moment and fault length for large crustal strike-slip earthquakes between 1977-92, Geophys. Res. Lett., 23, 905-908, 1996.
Radiguet, M., F. Cotton, I. Manighetti, M. Campillo, and J. Douglas, Dependency of near-field ground motions on the structural maturity of he ruptured faults, Bull. Seismol. Soc. Am., 99, 2572-2581, 2009.
Romanowicz, B., Strike-slip earthquakes on quasi-vertical transcurrent faults: Inferences for general scaling relations, Geophys. Res. Lett., 19, 481-484, 1992
Scholz, C. H., Scaling laws for large earthquakes: Consequences for physical models, Bull. Seismol. Soc. Am., 72, 1–14, 1982.
Scholz, C. H., A reappraisal of large earthquake scaling, Bull. Seismol. Soc. Am., 84, 215-218, 1994.
Sekiguchi, H. and T. Iwata, Rupture Process of the 1999 Kocaeli, Turkey, Earthquake Estimated from Strong-Motion Waveforms, Bull. Seismol. Soc. Am., 92, 300-311, 2002.
Shaw, B. E., Constant stress drop from small to great earthquakes in magnitude-area scaling, Bull. Seismol. Soc. Am., 99, 871-875, 2009.
Shaw, B. E., and S. G. Wesnousky, Slip-length scaling in large earthquakes: The role of deep-penetrating slip below the seismogenic layer, Bull. Seismol. Soc. Am., 98, 1633-1641, 2008.
Shimazaki, K., Small and large earthquakes: The effects of the thickness of seismogenic layer and the free surface, in Earthquake Source Mechanics, Das, S., J. Boatwright, and C. H. Scholz (Editors), American Geophysical Monograph 37, 209-216, 1986.
Shin, T. C., Application of waveform modeling to determine focal mechanisms of the 1993 Tapu earthquake and its aftershocks, TAO, 6, 167-179, 1995.
Stock, C., and E. G. C. Smith, Evidence for different scaling of earthquake source parameters for large earthquakes depending on faulting mechanism, Geophys. J. Int., 143, 157-162, 2000.
Takeo, M., An inversion method to analyze the rupture processes of earthquakes using near-field seismograms, Bull. Seismol. Soc. Am., 77, 490-513, 1987.
Takeo, M. and H. Kanamori, Simulation of Long-Period Ground Motions for the 1923 Kanto Earthquake (M~8), Bull. Earthq. Res. Inst., Univ. Tokyo, 67, 389-436, 1992.
Wald, D. J., D. V. Helmberger, and T. H. Heaton, Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong-motion and broadband teleseismic data, Bull. Seismol. Soc. Am., 81, 1540-1572, 1991.
Wald, D. J., and T. H. Heaton, Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bull. Seismol. Soc. Am., 84, 668-691, 1994.
Wang, J. H., and S. S. Ou, On scaling of earthquake faults, Bull. Seismol. Soc. Am., 88, 758-766, 1998.
Wells, D. L. and K. J. Coppersmith, New empirical relationships among Magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974-1002, 1994.
Wen, Y. Y., K. F. Ma, T. R. A. Song, and W. D. Mooney, Validation of the rupture properties of the 2001 Kunlun, China (Ms=8.1), earthquake from seismological and geological observations, Geophys. J. Int., 177, 555-570, 2009.
Wu, C. J., M. Takeo, and S. Ide, Source process of the Chi-Chi earthquake: A joint inversion of strong motion data and global positioning system data with a multifault model, Bull. Seismol. Soc. Am., 91, 1128-1143, 2001.
Wu, Y. M., C. H. Chang, N. C. Hsiao, and F. T. Wu, Relocation of the 1998 Rueyli, Taiwan, earthquake sequence using three-dimensions velocity structure with stations corrections, TAO, 14, 421-430. 2003.
Wu, Y. M., C. H. Chang, L. Zhao, J. B. H. Shyu, Y. G. Chen, K. Sieh, and J. P. Avouac, Seismic tomography of Taiwan: Improved constraints from a dense network of strong-motion stations, J. Geophys. Res., 112, B08312, 2007.
Wu, Y. M., L. Zhao, C. H. Chang, N. C. Hsiao, Y. G. Chen, and S. K. Hsu, Relocation of the 2006 Pingtung earthquake sequence and seismotectonics in Southern Taiwan, Tectonophysics, 479, 19–27, 2009.
Wu, W. N., H. Kao, S. K. Hsu, C. L. Lo, and H. W. Chen, Spatial variation of the crustal stress field along the Ryukyu‐Taiwan‐Luzon convergent boundary, J. Geophys. Res., 115, B11401, doi:10.1029/2009JB007080, 2010.
Yagi, Y., T. Mikumo, J. Pacheco, G. Reyes, Source Rupture Process of the Tecoman, Colima, Mexico Earthquake of 22 January 2003, Determined by Joint Inversion of Teleseismic Body-Wave and Near-Source Data, Bull. Seismol. Soc. Am., 94, 1795-1807, 2004.
Yao, Z. X. and D. G. Harkrider, A generalized reflection-transmission coefficient matrix anddiscrete wavenumber method for synthetic seismograms, Bull. Seismol. Soc. Am., 73, 1685-1699, 1983.
Yamamoto, J., L. Quintanar and Z. Jimenéz, Why earthquake doublets in the Ometepec, Guerrero, Mexico subduction area? Phys. Earth Planet. Inter., 132, 131-139, 2002.
Yen, Y. T., K. F. Ma, and Y. Y.Wen, Slip partition of the 26 December 2006 Pingtung, Taiwan (M 6.9, M 6.8) earthquake doublet determined from teleseismic waveforms, TAO, 19, 567-578, 2008.
Yin, Z. M., and G. C. Rogers, Toward a physical understanding of earthquake scaling relations, Pure Appl. Geophys., 146, 661- 675, 1996.
Zeng, Y. H., and C. H. Chen, Fault rupture process of the 20 September 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am., 91, 1088-1098, 2001
何美儀,台灣西部地區三維速度構造,國立中央大學地球物理研究所碩士論文,1994。
辛在勤,1994 年南澳地震序列的探討,國科會專題研究計畫成果報告(NSC85-2111-M052-011),1996。
林欣儀,台灣地震震源尺度分析:2003年規模>6.0地震分析,國立中央大學地球物理研究所碩士論文,2004。
林柏伸,台灣地區強地動衰減式研究與路徑效應分析,國立中央大學地球物理研究所博士論文,2009。
吳逸民、張建興、蔡義本、鍾仁光、辛在勤、王乾盈,使用近震P 波、S 波到時及S-P 到時差改善地震定位,第七屆台灣地區地球物理研討會論文集,第165-179頁,1998。
吳相儀,台灣地區中大型地震震源參數分析,國立中央大學地球物理研究所碩士論文,2000。
曹昌為,2005年宜蘭雙主震之震源破裂滑移分析,國立中央大學地球物理研究所碩士論文,2006。
張建興、辛在勤、王乾盈, 1998年嘉義瑞里地震:一長逆衝構造上的片段錯動。第七屆台灣地區地球物理研討會論文集,第1-12頁,1998。
詹忠翰,利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震,國立中央大學地球物理研究所碩士論文,2002。
顏銀桐,九二一集集地震之餘震(Mw≧6.0) 震源破裂滑移分佈,國立中央大學地球物理研究所碩士論文,2002。
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明