博碩士論文 985201038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.137.198.39
姓名 柯志霖(Zhi-lin Ke)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 K/V頻段低功率消耗低雜訊放大器暨K頻段混頻器之研究
(The Study on Low Power Consumption K/V Band Low Noise Amplifiers and K Band Mixer)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文內容為K/V頻段低功率消耗低雜訊放大器暨K頻段混頻器之研究。其中K頻段電路分別為低雜訊放大器與混頻器使用tsmcTM 0.18 μm製程。另外,V頻段電路為低雜訊放大器使用tsmcTM 90nm製程。
第一部分介紹K頻段放大器之實作,電路架構為三級共源級(C.S.)放大器,於第一級電路採用體偏壓(body bias)技術,藉此改變Vt以降低VDD,進一步減少功率消耗,因為級間少了耦合電容,其電壓亦後級的偏壓,故可以少一組PAD,以縮小電路佈局。量測上在25 GHz增益為11.15 dB,輸入與輸出反射係數分別為-6.1 dB及-7.6 dB,雜訊指數為5.12 dB,輸入三階交互調變交叉點為-7.5 dBm,電路功率消耗為4.9 mW,晶片面積為0.395 mm2。接著介紹V頻段低雜訊放大器之實作,電路架構使用電流再利用(current-reuse)的架構,可將兩級的共源極疊接,共用一路電流,進而節省功率及提高增益。在電晶體的尺寸與偏壓選取方面,先制定功率消耗,由電流密度反推一組合適的尺寸,並得電晶體最佳的fT、fmax、最大可允許增益(MAG)以及雜訊最小值(NFmin)。量測上在52 GHz增益為11.8 dB,輸入與輸出反射係數分別為-12 dB及-10 dB,雜訊指數為6.9 dB,輸入三階交互調變交叉點為-8 dBm,電路功率消耗為8.1 mW,晶片面積為0.378 mm2。
第二部分介紹K頻段混頻器之實作,RF與IF分別為24 GHz與10 MHz。本設計提出電流再利用技術應用在轉導級,成功地提升毫米波混頻器之轉換增益,以PMOS摺疊當作單平衡混頻開關級操作在23.99 GHz,達到低功率消耗且高轉換增益的設計目標。量測上在24 GHz轉換增益為15.1 dB,輸入三階交互調變交叉點為-6.7 dBm,三端的隔離度均小於-20 dB,電路功率消耗為4.06 mW,晶片面積為0.45 mm2。
摘要(英) The content of this thesis is the research of low power consumption K/V band LNA and K band mixer. K-band LNA and mixer were implemented in tsmcTM 0.18 μm CMOS technology. V-band LNA was implemented in tsmcTM 90 nm CMOS technology.
  The first section describes the design of K-band LNA. The LNA consists of three cascade common source amplifiers. The first stage adopts body-bias technique to change Vt which effectively reduces VDD and power consumption. The VDD is used to bias the next stage that saves a PAD. The arrangement can reduce the circuit area. The LNA achieves a measured peak power gain of 11.15 dB at 25 GHz. The input and output return losses are 6.1 dB and 7.6 dB, respectively. The measured NF is 5.12 dB and the measured IIP3 is -7.5 dBm. The power consumption is 4.9 mW. The chip area is 0.395 mm2. V-band LNA adopts the current reuse technique which is constructed by two stacked common source amplifiers. The current reuse topology shares the same supply current to reduce power consumption and improves the power gain. The transistor size and bias condition are firstly determined at fixed power consumption. The fT, fmax, maximum available gain (MAG) and NFmin of transistor are evaluated by different total width and current density. The V-band LNA achieves a measured peak power gain of 11.8 dB at 52 GHz. The input and output return losses are 12 dB and 10 dB respectively. The measured NF of the LNA is 6.9 dB and the measured IIP3 is -8 dBm. The power consumption is 8.1 mW. The chip area is 0.378 mm2.
The RF/IF frequencies of the differential K-band mixer are 24 GHz and 10 MHz, respectively. The current reuse technique is adopted in trans-conductance stage to enhance the conversion gain. The single balanced LO stage is formed by folded PMOS switch operating at 23.99 GHz that achieves the design goals of low power consumption and high conversion gain. The designed mixer achieves a conversion gain of 11.8 dB at 24 GHz. The measured IIP3 is -6.7 dBm. The port-to-port isolations are better than -20 dB. The power consumption is 4.06 mW. The chip area is 0.45 mm2.
關鍵字(中) ★ 混頻器
★ 低功率
★ 低雜訊放大器
關鍵字(英) ★ low noise amplifiers
★ mixer
★ low power consumption
論文目次 中文摘要 I
英文摘要 II
致謝 IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 研究結果 2
1-3 章節簡述 2
第二章 K頻段與V頻段雜訊放大器之研製 3
2-1 簡介 3
2-2 低雜訊放大器之雜訊分析 4
2-3 低雜訊放大器之設計流程 6
2-3-1 低雜訊放大器之重要參數  6
2-3-2 電路設計流程       10
2-4 K頻段低雜訊放大器之實作 12
2-4-1 電路架構   12
2-4-2 模擬與量測結果      17
2-4-3 結論           22
2-5 V頻段低雜訊放大器之實作 23
2-5-1 電路架構         23
2-5-2 模擬與量測結果      28
2-5-3 結論           34
第三章 K頻段混頻器之研製 35
3-1 簡介            35
3-2 混頻器之重要參數      36
3-3 K頻段混頻器之實作    40
3-3-1 電路架構         40
3-3-2 模擬與量測結果      43
3-3-3 結論           49
第四章 結論         50
4-1 結論            50
4-2 未來期許與展望       51
參考文獻           52
參考文獻 [1] J. Burghartz,“Silicon RF technology - the two generic approaches,” IEEE Solid-State Device Research Conf., vol., no., pp. 143- 153, 22-24 Sep. 1997.
[2] B. Heydari, M. Bohsali, E. Adabi, and A.M. Niknejad,“Low-power mm-wave components up to 104 GHz in 90nm CMOS,” IEEE ISSCC Dig. Tech. Papers, vol., no., pp.200-597, 11-15 Feb. 2007.
[3] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu,“Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE Journal of Solid-State Circuits, vol.42, no.5, pp.1044-1057, May 2007.
[4] C.-H. Wu, and H.-T. Chou,“A 2.4-GHz variable conversion gain mixer with body-bias control techniques for low voltage low power applications,” IEEE Asia Pacific Micro. Conf., vol., no., pp.1561-1564, 7-10 Dec. 2009.
[5] C.-P. Chang, J.-H. Chen, and Y.-H. Wang,“A Fully Integrated 5 GHz Low-Voltage LNA Using Forward Body Bias Technology,” IEEE Microwave and Wireless Components Lett., vol.19, no.3, pp.176-178, March 2009.
[6] C.-M. Li, M.-T. Li, K.-C. He, and J.-H. Tarng,“A low-power self-forward-body-bias CMOS LNA for 3–6.5-GHz UWB receivers,” IEEE Microwave and Wireless Components Lett., vol.20, no.2, pp.100-102, Feb. 2010.
[7] J. Liu, H. Liao, and R. Huang,“0.5 V ultra-low power wideband LNA with forward body bias technique,” Electronics Lett., vol.45, no.6, pp.289-290, March 2009.
[8] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M. F. Chang,“K-band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Lett., vol.14, no.3, pp. 106- 108, March 2004.
[9] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang,“A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Components Lett., vol.15, no.7, pp. 448- 450, July 2005.
[10] H.-Y. Liao, K.-C. Liang, and H.-K. Chiou,“A compact and low power consumption K-band differential low noise amplifier design using transformer feedback technique,” IEEE Asia Pacific Micro. Conf., vol., no., pp.1-4, 11-14 Dec. 2007.
[11] S.-C. Shin, S.-F. Lai, K.-Y. Lin, M.-D. Tsai, H. Wang, C.-S. Chang, and Y.-C. Tsai, “18-26 GHz low-noise amplifiers using 130-nm and 90-nm bulk CMOS technologies,” IEEE Radio Frequency integrated Circuits (RFIC) Symp., vol., no., pp. 47- 50, 12-14 June 2005.
[12] Y.-L. Wei, J.-D. Jin, and S.-H. Hsu, “A Low-Power Low-Noise Amplifier for K-Band Applications,” IEEE Microwave and Wireless Components Lett., vol.19, no.2, pp. 116- 118, Feb. 2009.
[13] W.-H. Cho, and S.-H. Hsu, “An Ultra-Low-Power 24 GHz Low-Noise Amplifier Using 0.13 um CMOS Technology,” IEEE Microwave and Wireless Components Lett., vol.20, no.12, pp. 681- 683, Feb. 2010.
[14] T.-P. Wang, “A Low-Voltage Low-Power K-Band CMOS LNA Using DC-Current-Path Split Technology,” IEEE Microwave and Wireless Components Lett., vol.20, no.9, pp. 519- 521, Sep. 2010.
[15] D. Linten, S. Thijs, M. I. Natarajan, P. Wambacq, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Donnay, and S. Decoutere,“A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE Journal of Solid-State Circuits, vol.40, no.7, pp. 1434- 1442, July 2005.
[16] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Broadersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40 no. 1, pp. 144-155, Jan. 2005.
[17] J.-W. Huang, C.-S. Wang, C.-K. Wang, and S.-H. Yeh, “Vertical-ground-plane transmission lines for miniaturized silicon-based MMICs,” in Proc. IEEE Rad. Freq. Integr. Circuits (RFIC) Symp., Jun. 2007 pp. 563 – 566.
[18] S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64 GHz LNA with 15.5 dB gain and 6.5 dB NF in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 7, pp.1542–1552, Jul. 2008.
[19] C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3 dB voltage gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS with differential output,” IEEE Int. Solid-State Circuit Conf Tech. Dig., pp. 192, Feb. 2008.
[20] B.-J. Huang, C.-H. Wang, C.-C. Chen, M.-F. Lei, P.-C. Huang, K. Y. Lin, and H. Wang, “Design and analysis for a 60 GHz low noise amplifier with RF ESD protection,” IEEE Trans. Microw. Theory Tech., vol.57, no.2, pp. 298-305, Feb. 2009.
[21] B.-J. Huang, K.-Y Lin, and H. Wang, “Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology,” IEEE Trans. Microw. Theory Tech., vol.57, no.12, pp. 3049-3059, Dec. 2009.
[22] C.-C. Huang, K.-C. Kuo,T.-H. Huang, and H.-R. Chuang, “Low-Power, High-Gain V-Band CMOS Low Noise Amplifier for Microwave Radiometer Applications,” IEEE Microwave and Wireless Components Lett., vol.21, no.2, pp. 104- 106, Feb. 2011.
[23] Lam, J.: ‘1.2 V CMOS down conversion mixer and VCO design for RF front-end transceiver applications’. MSc thesis, McMaster University, Canada, 2003.
[24] Ellinger, F., Rodoni, L.C., Sialm, G., Kromer, C., von Buren, G., Schmatz, M.L., Menolfi, C., Toifl, T., Morf, T., Kossel, M.,and Jackel, H., “30-40 GHz drain pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp.1382 – 1391, May 2004.
[25] Verma, A., Li Gao, O, K.K., and Lin, J., “A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 8, pp. 493 – 495, Aug. 2005.
[26] C. Viallon , J. Graffeuil, and T. Parra, “High performance K-band active mixer using BiCMOS SiGe process,” Electron. Lett., vol. 41, no. 3, pp. 134 – 135, Feb. 2005.
[27] A. Verma, K. K. O, and J. Lin, “A low-power up-conversion CMOS mixer for 22-29 GHz ultra-wideband applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3295–3300, Aug. 2006.
[28] C.-L. Kuo, B.-J. Huang, C.-C. Kuo, K.-Y. Lin, and H. Wang, “A 10–35 GHz low power bulk-driven mixer using 0.13 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 455 – 457, Jul. 2008.
[29] D. Ahn, D.-W. Kim, and S. Hong, “A K-band high-gain down-conversion mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., Vol. 19, no. 4, pp. 227 – 229, Apr. 2009.
[30] 邱煥凱教授, “微波積體電路設計,”,2007
[31] 李冠融,“應用於Ka頻帶之移相器及壓控振盪器暨Ka/V頻帶低雜訊放大器之研製,”,2009
指導教授 邱煥凱(Hwann-kaeo Chiou) 審核日期 2011-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明