博碩士論文 985201057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.145.18.3
姓名 張哲安(Che-An Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 次微米銻砷化銦鎵基極之異質接面雙極性電晶體製程開發與射極尺寸效應之研究
(Development of sub-micron InGaAsSb base double heterojunction bipolar transistors and investigation on emitter size effect)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗室先前的研究成果顯示,銻砷化銦鎵基極元件具有低導通電壓、高集極電流密度、高集極電子平均速度、低p型特徵接觸電阻與高電流增益等優點,而為了使元件具有較佳的高頻特性,元件尺寸必須被微縮以降低RC延遲時間。本研究即聚焦於磷化銦HBT之次微米製程技術。
我們以電子束微影技術為主的次微米製程,製作射極尺寸為0.8 x 9 um2之砷化銦鎵基極元件,其電流增益截止頻率為290 GHz,相較於射極尺寸1 x 10 um2之元件,上升幅度為46.5 %。此外,在基、集極分別為40 nm與200 nm的試片上,成功將射極尺寸微縮至0.4 x 9 um2,其基-集極電容可降至7.9 fF,且電流增益/最大功率增益截止頻率為272/176 GHz,與射極尺寸1 x 10 um2之元件相比,提升幅度分別為42.4 %與55.8 %。
本論文亦說明並解決相較於砷化銦鎵基極元件,次微米銻砷化銦鎵基極元件在製作上所會遇到的困難。此外,為了持續降低元件的RC延遲時間,成功地將射極金屬線寬微縮至0.27 um,並利用混和乾/濕蝕刻製程以同時降低射極與基極電阻,與提出基-集極電容與集極電阻降低之方法。
然而在不斷地微縮元件的尺寸時,即會遇到射極尺寸效應,因此本論文亦針對此效應進行研究,提出利用銻砷化銦鎵取代砷化銦鎵基極材料的方式以避免元件尺寸微縮時,造成電流增益的犧牲,並證實銻砷化銦鎵基極元件不需使用複雜的三元或四元複合式射極材料、額外磊晶技術,或射極突出物等製程技術,其射極周圍表面復合電流密度,即可與目前各團隊所發表的最低值相近。此外,當銻砷化銦鎵基極元件之銻含量提升至28 %時,在集極電流密度為0.1 A/cm2下,其射極周圍表面復合電流密度僅為7.37 x 10^-6 uA/um,此值即為各團隊所發表的最低值。
因此,本論文之結果皆有助於發展利用銻砷化銦鎵作為元件基極材料,達到THz電晶體之目標。
摘要(英) Recently a new type of heterojunction bipolar transistors (HBTs) with InGaAsSb base was proposed by our group. This novel transistor exhibited low turn-on voltage, high collector current density, high average electron velocity, low specific contact resistivity, and high current gain. In order to elevate the operation frequency of HBTs, the dimension of emitter must be scaled down to the sub-micron level to reduce the parasitic delays. In this work, efforts are focused on developing sub-micron InP-based HBTs.
InGaAs/InP HBTs with a 0.8x9 um2 emitter are fabricated by e-beam lithography. The highest current gain cutoff frequency (fT) is 290 GHz, which is superior than the 198 GHz observed on the conventional devices with an emitter of 1x10 um2. Devices with a base thickness of 40 nm and collector thickness of 200 nm exhibit a base-collector capacitance as low as 7.9 fF as the emitter dimension is scaled down to 0.4x9 um2. Meanwhile its fT and power gain cutoff frequency (fMAX) are 272 and 176 GHz, which are 1.424 and 1.558 times higher than those of the 1x10 um2 device, respectively.
In the course of this study, many difficulties in fabricating sub-micron InGaAsSb base DHBT are encountered and resolved. Besides, to further reduce parasitic delays, some more processes, such as 0.27 um-emitter metal, hybrid dry/wet etch for emitter, low emitter and base resistance, are developed.
As device size is scaled down to deep sub-micron level, surface recombination current increases and device performance degrades. Hence, this work is also involved in the investigation of emitter size effect (ESE). Compared to InGaAs base DHBT, the degradation of current gain is less significant for InGaAsSb base DHBT as device is scaled down. The normalized periphery surface recombination current density (KB,surf) for the InP/InGaAsSb DHBTs fabricated in this work is one of the lowest values among the reported InP-based DHBTs. It means that complicated Emitter/Base junction structures, growth processes and additional device process steps are no longer necessary for the HBTs with an InGaAsSb base. Furthermore, KB,surf as low as 7.37x10^-6 uA/um at Jc = 0.1 A/cm2 has been obtained as the Sb-content in the InGaAsSb base is increased to 28 %.
The results obtained in this work provide critical guidelines and routes for achieving THz InGaAsSb base HBTs.
關鍵字(中) ★ 次微米銻砷化銦鎵異質接面雙極性電晶體
★ 射極尺寸效應
關鍵字(英) ★ sub-micron InGaAsSb base DHBT
★ emitter size effect
論文目次 摘要 IV
Abstract V
致謝 VII
目錄 VIII
圖目錄 X
表目錄 XII
第一章 導論 1
1.1 簡介 1
1.2 研究動機 6
1.3 章節簡述 6
第二章 次微米砷化銦鎵基極元件製程技術開發 7
2.1 序論 7
2.2 射極金屬線寬400 nm之砷化銦鎵基極元件製程發展 8
2.2.1 定義、蒸鍍射極金屬 9
2.2.2 射極平台製作 13
2.2.3 定義、蒸鍍基極金屬 15
2.2.4 定義基極主動區與基極平台製作 17
2.2.5 後續製程 20
2.5 結論 24
第三章 次微米砷化銦鎵基極元件特性分析 25
3.1 序論 25
3.2 元件結構與製作 26
3.3 射極尺寸0.8 x 9 um2與1 x 10 um2之砷化銦鎵基極元件特性分析 28
3.3.1 固定元件結構,不同射極尺寸元件之特性分析 28
3.3.2 固定元件尺寸,不同集極厚度元件之特性分析 30
3.4 射極尺寸0.4 x 9 um2與1 x 10 um2之砷化銦鎵基極元件特性分析 35
3.5 結論 40
第四章 次微米銻砷化銦鎵基極元件製程開發與元件RC延遲時間之改善 41
4.1 序論 41
4.2 次微米銻砷化銦鎵基極元件製程開發 42
4.3 元件RC延遲時間之改善方法 45
4.4 線寬0.27 um之射極金屬製作 49
4.5 結論 51
第五章 砷化銦鎵與銻砷化銦鎵基極元件之射極尺寸效應研究 52
5.1 序論 52
5.2 元件結構與製作 53
5.3 射極周圍表面復合電流密度萃取與結果 54
5.3.1 射極周圍表面復合電流密度萃取方式 54
5.3.2 射極周圍表面復合電流密度萃取結果 56
5.4 低射極周圍表面復合電流密度之探討 59
5.5 不同射-基極結構對射極周圍表面復合電流密度之探討 61
5.5.1 不同射-基極結構對KB,surf之影響 61
5.5.2 不同銻含量之銻砷化銦鎵基極元件對KB,surf之影響 63
5.6 結論 65
第六章 結論 66
參考文獻 68
參考文獻 [1] B. S. Williams, H. Callebaut, S. Kumar, and Q. Hu, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett., vol. 82, No. 7, pp. 1015-1017, 2003.
[2] P. H. Siegel, “Terahertz technology,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, No. 3, 2002.
[3] M. Urteaga, M. Seo, and M. J. W. Rodwell, “InP HBTs for THz frequency integrated circuits,” in Proc. IPRM, 2011, pp. 47-50.
[4] W. Snodrass, W. Hafez, and M. Feng, “Pseudomorphic InP/InGaAs heterojunction bipolar transistors experimentally demonstrating fT = 765 GHz at 25°C increasing to fT = 845 GHz at -55°C,” in IEDM Tech. Dig., San Francisco, 2006, pp. 1-4.
[5] H. G. Liu, O. Ostinelli and C. R. Bolognesi, “600 GHz InP/GaAsSb/InP DHBTs grown by MOCVD with a Ga(As,Sb) graded-base and fT × BVCEO > 2.5 THz-V at room temperature,” in IEDM Tech. Dig., Washington, DC, 2007, pp. 667-670.
[6] B. R. Wu, W. Snodrass, W. Hafez, M. Feng, and K. Y. Cheng, “Ultra-high speed composition graded InGaAsSb/GaAsSb DHBTs with fT = 500 GHz grown by gas-source molecular beam epitaxy,” in Proc. IPRM, 2006, pp. 89-91.
[7] S. H. Chen, S. Y. Wang, R. J. Hsieh, and J. –I. Chyi, “InGaAsSb/InP double heterojunction bipolar transistors grown by solid-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 679-681, 2007.
[8] S. H. Chen, S. Y. Wang, K. H. Teng, and J. –I. Chyi, “Low turn-on voltage and high-current InP/In0.37Ga0.63As0.89Sb0.11/In0.53Ga0.47As double heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 655-657, 2008.
[9] 鄧國宏, “具銻砷化銦鎵基極之磷化銦異質接面雙載子電晶體製作與分析”碩士論文,國立中央大學,民國97 年。
[10] B. Mazhari, and H. Morkoc, “Effect of collector-base valence-band discontinuity on Kirk effect in double heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 59, No. 17, pp. 2162-2164, 1991.
[11] C. R. Bolognesi, N. Matine, X. Xu, J. Hu, and M. L. W. Thewalt, “Low-offset NpN InP/GaAsSb/InP double heterojunction bipolar transistors with abrupt interfaces and ballistic ally launched collector electrons,” IEEE Device Research Conference, pp. 30-31, 1998.
[12] C. M. Chang, S. H. Chen, and J. –I. Chyi, “Characterization of InAlAs/In0.25Ga0.75As0.72Sb0.28/InGaAs double heterojunction bipolar transistors,” in Proc. IPRM, May. 2010, pp. 309-312.
[13] S. H. Chen, C. M. Chang and J. –I. Chyi, “DC characteristics of InAlAs/InGaAsSb/InGaAs double heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 57, no. 12, pp. 3327-3332, 2010.
[14] Z. Jin, X. Liu, W. Prost, and F. –J. Tegude, “Surface-recombination-free InGaAs/InP HBTs and the base contact recombination,” Solid State Electronics, vol. 52, no. 7, pp. 1088-1091, 2008.
[15] E. Tokumitsu, A. G. Dentai, and C. H. Joyner, “Reduction of surface recombination current in InGaAs/InP pseudo- heterojunction bipolar transistors using a thin InP passivation layer,” IEEE Electron Device Lett., vol. 10, no. 12, pp. 585-587, 1989.
[16] S. Y. Wang, P. Y. Chiang, and J. –I. Chyi, “Low surface recombination in InAlAs/InGaAsSb/InGaAs double heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1401-1403, 2010.
[17] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, no. 3, pp. 371-373, 1992.
[18] Z. Lin, S. Neumann, W. Prost, and F. –J. Tegude, “Surface recombination mechanism in graded-base InGaAs-InP HBTs,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 1044-1045, 2004.
[19] N. G. M. Tao, H. Liu, and C. R. Bolognesi, “Surface recombination currents in “Type-II” NpN InP/GaAsSb/InP self-aligned DHBTs,” IEEE Trans. Electron Devices, vol. 52, no.6, pp. 1061-1066, 2005.
[20] O. Nakajima, K. Nagata, H. Ito, T. Ishibashi, and T. Sugeta, “Emitter–base junction size effect on current gain Hfe on AlGaAs/GaAs heterojunction bipolar transistor,” Jpn. J. Appl. Phys., vol. 24, no. 8, pp. 596–598, 1985.
[21] J. Langer, and W. Walukiewicz, “Surface recombination in semiconductors,” in Proc. Int. Conf. Defects Semicond., 1995, pp. 102-104.
[22] H. G. Liu, H. D. Chang, and B. Sun, “Extrinsic base surface passivation in terahertz GaAsSb/InP DHBTs using InGaAsP ledge structures,” IEEE Trans. Electron Devices, vol. 58, no.2, pp. 576-578, 2011.
[23] H. G. Liu, O. Ostinelli, Y. P. Zeng, and C. R. Bolognesi, “Emitter-size effects and ultimate scalability of InP:GaInP/GaAsSb/InP DHBTs,” IEEE Electron Device Lett., vol. 29, no. 6, pp. 546-548, 2008.
[24] C. W. Ng, and H. Wang, “Suppression of surface recombination in InP/GaAsSb double heterojunction bipolar transistors with InP-InAlAs composite emitter,” J. Appl. Phys., vol. 107, no. 11, pp. 116106, 2010.
[25] K. Y. D. Cheng, C. C. Liao, H. Xu, K. Y. Norman Cheng, and M. Feng, “Hot electron injection effect on the microwave performance of type-I/II AlInP/GaAsSb/InP double-heterojunction bipolar transistors” Appl. Phys. Lett., vol. 98, no. 24, pp. 242103, 2011.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2011-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明