博碩士論文 985201021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.149.238.239
姓名 朱永楨(Yong-Jhen Jhu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具10相位輸出之40億赫茲全數位式鎖相迴路
(A 4-GHz 10-Phase All Digital Phase-Locked Loop)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一個操作在4 GHz、擁有10個相位輸出之全數位式鎖相迴路之單晶片系統設計。此鎖相迴路所運用之多重相位數位控制振盪器採用三態反向器組成的迴圈,以獲得高頻率輸出及寬範圍操作。所使用之時間數位轉換器重複利用振盪器的多相位輸出來對時間差值作取樣,因此可大幅減少面積消耗。並加入了一個時間放大器,來增加時間數位轉換器的解析度。另外,藉由一個頻率偵測器,加速數位控制振盪器在選擇頻段下的運作,增加鎖相迴路中頻率追鎖的速度。因此,本鎖相迴路能滿足可攜式電子產品應用之需求。
本論文之全數位式鎖相迴路使用TSMC 90 nm 1P9M CMOS製程實現晶片,其操作頻率範圍可從3 GHz到4.2 GHz。電路在操作頻率為4 GHz時,功率消耗為52 mW,而輸出訊號之最大峰對峰值時間抖動量為12.14 ps (4.86 %),方均根抖動量為1.44 ps。整體晶片面積為510 × 590 um2,核心電路的面積為140 × 220 um2。
摘要(英) A 4-GHz 10-phase all digital phase-locked loop (ADPLL) is proposed for system-on-chip (SoC) systems. The proposed multiphase digital controlled oscillator (MP-DCO) adopts the tri-state inverter loop scheme to obtain the higher operating frequency and wide operation range. The MP-DCO outputs are used to be Time-to-digital Converter (TDC) sampled clock and sample the time difference. Therefore, the reused MP-DCO output can reduce the area cost of the TDC. Time amplifier (TA) can extend the timing resolution of the TDC. The frequency acquisition can achieve the fast locking time using frequency detector (FD) and multi-band operation range of the MP-DCO. Thus, this clock generator is suitable for portable products and mobile applications.
The experimental chip was fabricated by TSMC 90 nm 1P9M CMOS process. The measurement results show that the operation range is from 3 GHz to 4.2 GHz, and the power consumption is 52 mW at 4 GHz. The peak-to-peak jitter and RMS jitter are 12.14 ps and 1.44 ps at 4 GHz, respectively. The whole chip area is 510 × 590 um2, and the core area is 140 × 220 um2.
關鍵字(中) ★ 頻率偵測器
★ 時間數位轉換器
★ 數位控制振盪器
★ 全數位式鎖相迴
關鍵字(英) ★ FD
★ TDC
★ ADPLL
★ DCO
論文目次 第1章 緒論 1
1.1 研究動機 1
1.2 研究目的及其應用 2
1.3 論文架構 3
第2章 全數位式鎖相迴路先前技術探討 5
2.1 鎖相迴路種類簡介 5
2.2 全數位式鎖相迴路架構探討 6
2.2.1 低時脈抖動之全數位式鎖相迴路[1] 6
2.2.2 可抵抗PVT變異之全數位式鎖相迴路[2] 8
2.2.3 快速鎖定之數位式鎖相迴路[3] 9
2.2.4 低相位雜訊之數位式鎖相迴路[4] 11
2.2.5 免校正之數位式鎖相迴路[5] 12
2.2.6 各種鎖相迴路架構規格比較 14
2.3 本論文預計規格 16
第3章 多重相位數位控制振盪器並應用於時間數位轉換器與頻率偵測器 17
3.1 設計概念 17
3.2 多重相位數位控制振盪器 (MP-DCO) 18
3.2.1 多重相位數位控制振盪器公式探討[6] 18
3.2.2 多重相位數位控制振盪器架構 20
3.2.3 多重相位數位控制振盪器模擬結果 23
3.2.4 多重相位數位控制振盪器佈局考量 25
3.3 時間數位轉換器(TDC) 27
3.3.1 時間數位轉換器架構 27
3.3.2 時間數位轉換器模擬結果 32
3.3.3 時間數位轉換器之位元數探討 35
3.4 頻率偵測器(FD) 36
3.4.1 頻率偵測器架構 36
3.4.2 頻率偵測器模擬結果 38
第4章 全數位式鎖相迴路架構分析與子電路介紹 41
4.1 電路架構與操作 41
4.2 鎖相迴路系統分析[8] 43
4.2.1 全數位式鎖相迴路之S-domain分析 43
4.2.2 電荷幫浦鎖相迴路之S-domain分析 44
4.2.3 計算數位迴路濾波器之參數 45
4.3 全數位式鎖相迴路之子電路設計 48
4.3.1 相位頻率偵測器 48
4.3.2 數位迴路濾波器 50
第5章 電路模擬與晶片量測結果 53
5.1 設計流程 53
5.2 佈局前電路模擬 53
5.3 電路佈局與佈局後電路模擬 55
5.4 晶片照相與量測環境設定 58
5.5 量測結果 60
5.6 規格比較 64
第6章 結論與未來研究方向 67
6.1 結論 67
6.2 未來研究方向 67
參考文獻 69
參考文獻 [1] H.-J. Hsu, and S.-Y. Huang, ‘‘A Low-Jitter ADPLL via a Suppressive Digital Filter and an Interpolation-Based Locking Scheme,’’ IEEE Trans. on VLSI, vol. 19, no. 1, pp. 165-170, Jan. 2011.
[2] W. Liu, W. Li, P. Ren, C. Lin, S. Zhang, and Y. Wang, “A PVT tolerant 10 to 500 MHz all-digital phase-locked loop with coupled TDC and DCO,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 314-321, Feb. 2010
[3] C.-C. Hung, and S.-I. Liu, ‘‘A 40-GHz fast-locked all-digital phase-locked loop using a modified bang-bang algorithm,’’ IEEE Trans. on Circuits Syst. II: Expr. Briefs, vol. 58, no. 6, pp. 321-325, Jun. 2011.
[4] T. Tokairin, M. Okada, M. Kitsunezuka, T. Maeda, and M. Fukaishi ‘‘A 2.1-to-2.8-GHz low-phase-noise all-digital frequency synthesizer with a time-windowed time-to-digital converter,’’ IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2582-2590, Oct. 2010.
[5] M. S.-W. Chen, D. Su, and S. Mehta, ‘‘A calibration-free 800 MHz fractional-N digital PLL with embedded TDC,’’ IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2819 - 2827, Oct. 2010.
[6] H.-Y. Huang, and F.-C. Tsai, ‘‘Analysis and optimization of ring oscillator using sub-feedback scheme,’’ in Proc. IEEE Int. Symp. Design and Diagnostics of Electronic Circuits and Systems, Apr. 2009, pp. 28-29.
[7] M. Lee, and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769-777, Apr. 2008.
[8] V. Kratyuk, ‘‘Digital phase-locked loops for multi-GHz clock generation,” OSU Ph. D. Thesis, Dec. 2006.
[9] S.-Y. Lin, and S.-I. Liu, “A 1.5 GHz all-digital spread-spectrum clock generator,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3111-3119, Nov. 2009.
[10] Y.-H. Seo, S.-K. Lee, and J.-Y. Sim, “A 1-GHz digital PLL with a 3-ps resolution floating-point-number TDC in a 0.18-um CMOS” IEEE Trans. on Circuits Syst. II: Expr. Briefs, vol. 58, no. 2, pp. 70-74, Feb. 2011.
[11] H.-J. Hsu, C.-C. Tu, and S.-Y. Huang, “A high-resolution all-digital phase-locked loop with its application to built-in speed grading for memory”, IEEE Symposium on VLSI-DAT, Apr. 2008.
[12] W. Grollitsch, R. Nonis, and N. D. Dalt, ‘‘A 1.4 psrms-period-jitter TDC-less fractional-N digital PLL with digitally controlled ring oscillator in 65 nm CMOS,’’ in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 478-479.
[13] M. Lee, M.-E. Heidari, and A. A. Abidi, “A low-noise wideband digital phase-locked loop based on a coarse-fine time-to-digital converter with subpicosecond resolution,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2808-2816, Oct. 2009.
[14] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, ‘‘A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI,’’ IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
[15] M. Z. Straayer, and M. H. Perrott, ‘‘A multi-path gated ring oscillator TDC with first-order noise shaping,’’ IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1089-1098, Apr. 2009.
[16] S.-K. Lee, Y.-H. Seo, H.-J. Park, and J.-Y. Sim, ‘‘A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 um CMOS,’’ IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2874-2881, Oct. 2010.
[17] P. Lu, and H. Sjoland, ‘‘A 5GHz 90-nm CMOS all digital phase-locked loop,’’ IEEE Asian Solid-State Circuits Conference, pp. 65-68, Dec. 2009.
[18] V. Kratyuk, P.-K. Hanumolu, K. Ok, U.-K. Moon, and K. Mayaram, ‘‘A digital PLL with a stochastic time-to-digital converter,’’ IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 56, no. 8, pp. 1612-1621, Dec. 2008.
[19] V. D. Heyn, G. Van der Plas, J. Ryckaert, and J. Craninckx, ‘‘A fast start-up 3GHz–10GHz digitally controlled oscillator for UWB impulse radio in 90nm CMOS,’’ ESSCIRC Solid State Circuits Conference, pp. 484-487, Jan. 2008.
[20] R.K. Pokharel, A. Tomar, H. Kanaya, and K. Yoshida, ”Design of Highly Linear, 1GHz 8-bit Digitally Controlled Ring Oscillator with Wide Tuning Range in 0.18um CMOS Process”, China-Japan Joint Microwave Conference, Sep. 2007.
[21] B. Tong, W. Yan, and X. Zhou, “A Constant-Gain Time-Amplifier with Digital Self-Calibration”, IEEE International Conference on ASIC, pp. 1133–1136, Oct. 2009.
[22] K.-H. Cheng, C.-C. Hu; J.-C. Liu, and H.-Y. Huang, ‘‘A Time-to-Digital Converter Using Multi-Phase-Sampling and Time Amplifier for All Digital Phase-Locked Loop,’’ IEEE Symposium on DDECS, pp. 285-288, Jun. 2010.
[23] S.-I. Liu, and C.-Y. Yang, ‘‘Phase-locked loop,’’ Taipei: Tsang Hai Book Publishing Co., Nov. 2006.
[24] F.-C. Tasi, ‘‘Interpolation multiphase phase locked loop,” NTPU M. Thesis, Jul. 2009.
[25] U.-J. Chen, ‘‘An ultra low power all digital PLL for wide power supply range,” NCU M. Thesis, Oct. 2009.
[26] Y.-L. Chang, ‘‘An 1.25-GHz all digital phase-Locked loop for low supply voltage applications,” NCU M. Thesis, Oct. 2010.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2011-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明