博碩士論文 985201028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.190.160.235
姓名 沙宇杰(Yu-Jie Sha)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 MPEG-2 AAC編碼器的SoC設計
(An SoC Design of MPEG-2 AAC Encoder)
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 應用於多導程心電訊號之無損壓縮演算法與實現
★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現★ 晶圓圖缺陷分類與嵌入式系統實現
★ 語音密集連接卷積網路應用於小尺寸關鍵詞偵測★ G2LGAN: 對不平衡資料集進行資料擴增應用於晶圓圖缺陷分類
★ 補償無乘法數位濾波器有限精準度之演算法設計技巧★ 可規劃式維特比解碼器之設計與實現
★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計★ JPEG2000靜態影像編碼系統之分析與架構設計
★ 適用於通訊系統之低功率渦輪碼解碼器★ 應用於多媒體通訊之平台式設計
★ 適用MPEG 編碼器之數位浮水印系統設計與實現★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在日常生活的娛樂與通訊中,數位音訊編碼扮演著一個很重要的角色。自從MPEG Layer-III(MP3)被發佈出來並且在3C產品中變成非常有名,MPEG協會提出了MPEG-2 Advanced Audio Coding(AAC)為新一代的音訊編碼規格。在這個新的規格中,它的性能與壓縮率都比MP3要來的高。可是它的演算法也相對來說更複雜而且包含更高的運算量。因此如何降低AAC編碼器的運算量並且維持低失真率是一個主要的挑戰。
在本論文中,我們提出了一個MPEG-2 AAC編碼器的SoC設計,而且針對MPEG-2 AAC編碼器中最主要的組件做最佳化,也就是聲學模型(PAM)。為了要減少聲學模型的複雜度,我們使用了基於改良式離散餘弦轉換之聲學模型(MDCT-based PAM)來減輕整個系統的運算量。我們使用台積電的0.18μm 1P6M CMOS製程來實現我們所提出的編碼器。為了增加我們所設計的硬體加速器的處理能力(throughput),我們使用了管線與摺疊式的設計。本設計的總邏輯閘數是284K個,而基於改良式離散餘弦轉換之聲學模型與Andes Core N903處理器針對取樣頻率為44100赫茲、立體聲道的音樂可以達到即時編碼,其所需的操作頻率各為10兆赫與100兆赫。
摘要(英) Digital audio coding has played an important role in our daily life for entertainment and communication. Since MPEG Layer-III (MP3) had been published, and became very popular in consumer applications, the MPEG organization proposed MPEG-2 Advanced Audio Coding (AAC) standard as the next generation of audio standard. Both performance and compression ratio of AAC are better than MP3. However, the algorithm is more complex and computation-intensive. Thus, how to reduce the computation and maintain the audio fidelity is the major challenge of AAC encoder.
In this thesis, we proposed an SoC design of MPEG-2 AAC encoder, and optimized the key component of MPEG-2 AAC encoder, which is the psychoacoustic model (PAM). In order to reduce the complexity of psychoacoustic model, we used the MDCT-based PAM to alleviate the loading of the entire system. Our proposed encoder is implemented in TSMC 0.18 μm 1P6M CMOS technology. Pipelining and folding technique are used to increase throughput of the hardware accelerator. The total gate count is 284K and the operating frequency for real-time stereo channel of sampling rate 44.1KHz audio sequence processing is 10 MHz and 100MHz for MDCT-based PAM and Andes Core N903 processor respectively.
關鍵字(中) ★ SoC
★ MDCT
★ Encoder
★ AAC
關鍵字(英) ★ SoC
★ Encoder
★ MDCT
★ AAC
論文目次 摘要 i
Abstract ix
Table of Contents x
List of Figures xii
List of Tables xiv
Chapter 1 Introduction 1
1.1 The History and Feature of Audio Application 2
1.2 The System of MPEG-2/4 AAC, HE-AAC v1/v2 6
1.2.1 The system of MPEG-2/4 AAC encoder 6
1.2.2 The System of HE-AAC v1 (AAC+SBR) 7
1.2.3 The System of HE-AAC v2 (AAC+SBR+PS) 8
1.3 Overview of SoC Platform-based Design 9
1.4 Motivation 10
1.5 Thesis Organization 14
Chapter 2 The Overview of MPEG-2/4 AAC Encoder 15
2.1 Filterbank 18
2.1.1 Window Shape Adaptation 19
2.1.2 Window Type Decision 19
2.1.3 Modified Discrete Cosine Transform (MDCT) 21
2.2 Psychoacoustic Model 22
2.3 The Spectral Processing Part (SPP) 25
2.3.1 Temporal Noise Shaping (TNS) 25
2.3.2 Joint Stereo Coding 25
2.4 Quantization Loop (Q loop) 26
Chapter 3 The Algorithm of Low Complexity MDCT-Based Psychoacoustic Model 29
3.1 FFT-Based MDCT Algorithm 32
3.2 Low Complexity MDCT-Based Psychoacoustic Model 35
Chapter 4 SoC Design of Proposed AAC Encoder 42
4.1 Architecture of Proposed Design 43
4.1.1 Software/Hardware Partition 43
4.1.2 System Architecture 45
4.1.3 Software Development 49
4.1.4 Hardware Implementation 50
4.2 The Architecture of MDCT-Based PAM 51
4.2.1 MDCT 53
4.2.2 Threshold Generator (TG) 54
4.2.3 The Log Module 55
Chapter 5 Implementations and Results 58
5.1 Performance Evaluation 59
5.2 Power Analysis and Evaluation 60
5.3 Designs for Testing Strategy Power Analysis and Evaluation 62
5.4 Comparison and Results 62
Chapter 6 Conclusions and Future Work 71
References 73
參考文獻 [1] MPEG. Coding of moving pictures and associated audio for digital storage media at up to 1.5 Mbit/s, part 3: Audio, International Standard IS 11172-3, ISO/IEC JTC1/SC29 WG11, 1992.
[2] MPEG. Information Technology – generic coding of moving pictures and associated audio, part 3: Audio, International Standard IS 13818-3, ISO/IEC JTC1/SC29 WG11, 1994.
[3] MPEG-2 Advanced Audio Coding, AAC, International Standard IS 13818-7, ISO/IEC JTC1/SC29 WG11, 1997.
[4] MPEG. Information technology – Coding of audio-visual objects – Part 3: Audio, International Standard IS 14496-3, ISO/IEC JTC1/SC29 WG11, 1999.
[5] MPEG. Information technology – Coding of audio-visual objects – Part 3: Audio, Amendment 1: Bandwidth extension. ISO/IEC 14496-3:2001/Amd. 1:2003, Nov. 2003.
[6] MPEG Information technology – Coding of audio-visual objects – part 3: Audio, Amendment 2: Parametric coding for high-quality audio, ISO/IEC 14496-3/Amd. 2: 2004.
[7] MPEG Information technology – Coding of audio-visual objects – part 3: Audio, Amendment 2: Audio Lossless Coding, ISO/IEC 14496-3/Amd. 2: 2005.
[8] MPEG Information technology – Coding of audio-visual objects – part 3: Audio, Amendment 3: Scalable Lossless Coding, ISO/IEC 14496-3/Amd. 3: 2005.
[9] R. Geiger, T. Sporer, J. Koller, and K. Brandenburg, “Audio Coding based on Integer Transform,” in AES 111th Convention, New York, NY, USA Preprint 5471 Sept. 2001.
[10] T. Liebchen, “An introduction to MPEG-4 audio lossless coding,” IEEE Proc. ICSSAP2004, vol. 3, pp. iii – 1012 – 1015, May 2004.
[11] P. Coussy, A. Baganne, and E. Martin. “Virtual component IP re-use in telecommunication systems design: a case study of MPEG-2/JPEG2000 encoder,” IEEE Proc .ICECS2002, vol. 2, pp.733-736, Sept. 2002.
[12] C.N. Liu, and T.H. Tsai, “SoC platform based design of MPEG-2/4 AAC audio decoder,” IEEE Proc. ISCAS2005., vol. 3, pp.2581-2584, May 2005.
[13] Domazet, D.; Kovac, M.; “Advanced software implementation of MPEG-AAC audio encoder”, 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications, 2003. Volume 2, 2-5 July 2003 Page(s):679 – 684 vol.2.
[14] D. Huang, X. Gong, D. Zhou, T. Miki, S. Hotani, “Implementation of the MPEG-4 Advanced Audio Coding encoder on ADSP-21060 SHARC,” in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Vol. 3, page(s): 544 – 547.
[15] D. Alberto, P. Rafael, R. Begona, A. Enrique, and P. Antonio; “A Robust and Efficient
Implementation of MPEG-2/4 AAC Natural Audio Coders” , in AES 112th Convention 2002
May 10-13 Munich,Germany.
[16] P. Antonio, A. Enrique, R. Begona, P. Rafael, and D. Alberto;” Realtime implementations of MPEG-2 and MPEG-4 natural audio coders” , in AES 110th Convention 2001 May 12-15 Amsterdam, The Netherlands.
[17] Y.C. Lu; C.-F. Shen and C.K. Chen; “A novel hardware accelerator architecture for MPEG-2/4 AAC encoder”, 2004 IEEE International Conference on Multimedia and Expo, 2004. ICME '04. Volume 2, 27-30 June 2004 Page(s):1139 – 1142 Vol.2.
[18] M. Kahrs, K. Brandenburg, Applications of digital signal processing to audio and acoustics. Kluwer Academic Publishers, 1998, p.59.
[19] H.-C. Liu, “A Low Complexity Platform-Based Psychoacoustic Model (PAM) for MPEG-2/4 AAC Encoder,” Department of Electrical Engineering, National Central University, Jhongli City, Taoyuan County, Taiwan (R.O.C.); Master Thesis, 2008.
[20] Fengduo Hu, “ITE Technology Incorporated,” 2003.
[21] Y. Takamizawa, T. Nomura, and M. Ikekawa, “High-quality and processor-efficient
implementation of an MPEG-2 AAC encoder,” in Proceedings of the 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing, Vol. 2, Page(s): 985 – 988.
[22] J. D. Johnston, “Transform coding of audio signals using perceptual noise criteria,” IEEE
Journal on Selected Areas in Communications, Vol. 6, No 2, pp. 314-323, Feb., 1988.
[23] I. Dimkoviae, D. Milovanoviae, Z. Bojkoviae, “Fast software implementation of MPEG
advanced audio encoder,” 2002 14th International Conference on Digital Signal Processing,
Vol. 2, Page(s): 839 –843.
[24] S.W Huang; T.H. Tsai; L.G. Chen; “A low complexity design of psycho-acoustic model for MPEG-2/4 advanced audio coding”, IEEE Transactions on Consumer Electronics, Volume 50, Issue 4, Nov. 2004 Page(s):1209 - 1217.
[25] S.W. Huang; L.G. Chen; T.H. Tsai; “Memory and Computationally Efficient Psychoacoustic Model for MPEG AAC on 16-bit Fixed-point Processors” Circuits and Systems, 2005. ISCAS 2005. Symposium on IEEE International 23-26 May 2005 Page(s):3155 – 3158.
[26] P.S. Wu, and Y.T. Hwan; “Efficient IMDCT core designs for audio signal processing”, IEEE Workshop on Signal Processing Systems, 2003. SIPS 2003. 27-29 Aug. 2003 Page(s):275 –280
[27] P. Duhmel, Y. Mahieux, and J.P. Petit, “A fast algorithm for the implementation of filter banks based 1on ‘time domain aliasing cancellation’ ”, International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, Page(s): 2209 - 2212, Apr, 1991.
[28] Britanak, V.; Rao, K.R.; “An efficient implementation of the forward and inverse MDCT in MPEG audio coding”, IEEE Signal Processing Letters, Volume 8, Issue 2, Feb. 2001 Page(s): 48 - 51.
[29] Y.H. Fan, Madisetti, V.K. and Mersereau, R.M.; “On fast algorithms for computing the inverse modified discrete cosine transform”, IEEE Signal Processing Letters, Volume 6, Issue 3, March 1999 Page(s): 61 - 64.
[30] M.-H Cheng, Y.-H. Hsu, “Fast IMDCT and MDCT algorithms-a matrix approach”, IEEE Trans. On Signal Processing, Jan 2003, pp. 221 - 229.
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2011-11-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明