參考文獻 |
1. 王千豪(民96),基於近似詞彙樣式匹配與共現關聯度之文件分群,未出版碩士論文,私立大同大學資訊經營學系(所)。
2. 張家寧(民98),以概念萃取為基礎之文件分群與視覺化,未出版碩士論文,國立交通大學資訊科學與工程研究所。
3. 楊雅婷、阮明淑(民95), 「分類相關概念之術語學研究」, 國家圖書館館刊, No. 2, 25-50。
4. 陳志豐(民97),基於高頻項目集結合近似樣式匹配之文件分群,未出版碩士論文,私立大同大學資訊經營學系(所)。
5. 潘麒全(民92),可修正的二分群集法,未出版碩士論文,私立中原大學資訊管理研究所。
6. Amigo, E., Gonzalo, J., Artiles, J., & Verdejo, F. (2009). A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf. Retr., 12(4), 461-486.
7. Beil, F., Ester, M., & Xu, X. (2002). Frequent term-based text clustering. Paper presented at the Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, Edmonton, Alberta, Canada.
8. Berland, M., & Charniak, E. (1999). Finding parts in very large corpora. Paper presented at the Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics, College Park, Maryland.
9. Caramia, M., Felici, G., & Pezzoli, A. (2004). Improving search results with data mining in a thematic search engine. Comput. Oper. Res., 31(14), 2387-2404.
10. Chen, P.-I., & Lin, S.-J. (2010). Automatic keyword prediction using Google similarity distance. Expert Systems with Applications, 37(3), 1928-1938.
11. Chung, S., & McLeod, D. (2005). Dynamic Pattern Mining: An Incremental Data Clustering Approach (pp. 85-112).
12. Cilibrasi, R. L., & Vitanyi, P. M. B. (2007). The Google Similarity Distance. IEEE Trans. on Knowl. and Data Eng., 19(3), 370-383.
13. Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. Paper presented at the Proceedings of the 14th conference on Computational linguistics - Volume 2, Nantes, France.
14. Henschel, A., Woon, W. L., Wachter, T., & Madnick, S. (2009). Comparison of generality based algorithm variants for automatic taxonomy generation. Paper presented at the Proceedings of the 6th international conference on Innovations in information technology, AI-Ain, United Arab Emirates.
15. Heymann, P., & Garcia-Molina, H. (2006). Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems.
16. Larsen, B., & Aone, C. (1999). Fast and effective text mining using linear-time document clustering. Paper presented at the Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, California, United States.
17. Lin, F.-r., & Hsueh, C.-m. (2003, 6-9 Jan. 2003). Knowledge map creation and maintenance for virtual communities of practice. Paper presented at the System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on.
18. Lin, F.-r., & Yu, J.-H. (2009). Visualized cognitive knowledge map integration for P2P networks. Decis. Support Syst., 46(4), 774-785.
19. Makrehchi, M., & Kamel, M. S. (2007). Automatic Taxonomy Extraction Using Google and Term Dependency. Paper presented at the Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence.
20. Oliveira, A., Pereira, F., & Cardoso, A. (2002). Automatic Reading and Learning from Text. Paper presented at the Symposium on Artificial Intelligence.
21. Ong, T.-H., Chen, H., Sung, W.-k., & Zhu, B. (2005). Newsmap: a knowledge map for online news. Decision Support Systems, 39(4), 583-597.
22. Rajaraman, K., & Tan, A.-H. (2002). Knowledge discovery from texts: a concept frame graph approach. Paper presented at the Proceedings of the eleventh international conference on Information and knowledge management, McLean, Virginia, USA.
23. Reynaldo, G.-G., & Aurora, P.-P. (2010). Dynamic hierarchical algorithms for document clustering. Pattern Recognition Letters, 31(6), 469-477.
24. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Inf. Process. Manage., 24(5), 513-523.
25. Sanderson, M., & Croft, B. (1999). Deriving concept hierarchies from text. Paper presented at the SIGIR '99: Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval.
26. Shih, J.-Y., Chang, Y.-J., & Chen, W.-H. (2008). Using GHSOM to construct legal maps for Taiwan's securities and futures markets. Expert Syst. Appl., 34(2), 850-858.
27. Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering techniques.
28. Tsui, E., Wang, W. M., Cheung, C. F., & Lau, A. S. M. (2010). A concept-relationship acquisition and inference approach for hierarchical taxonomy construction from tags. Inf. Process. Manage., 46(1), 44-57.
29. Widyantoro, D. H., Ioerger, T. R., & Yen, J. (2002). An Incremental Approach to Building a Cluster Hierarchy. Paper presented at the Proceedings of the 2002 IEEE International Conference on Data Mining.
30. Wong, W., & Fu, A. (2000). Incremental Document Clustering for Web Page Classification.
31. Woon, W. L., & Madnick, S. (2009). Asymmetric information distances for automated taxonomy construction. Knowl. Inf. Syst., 21(1), 91-111.
32. Yang, Y., Carbonell, J. G., Brown, R. D., Pierce, T., Archibald, B. T., & Liu, X. (1999). Learning Approaches for Detecting and Tracking News Events. IEEE Intelligent Systems, 14(4), 32-43.
33. Zhang, W., Yoshida, T., Tang, X., & Wang, Q. (2010). Text clustering using frequent itemsets. Knowledge-Based Systems, 23(5), 379-388.
34. 視覺素養學習網(無日期),2011年5月21日取自http://vr.theatre.ntu.edu.tw/fineart/index.html。
35. 國際數據資訊公司(2010),2011年5月21日取自http://www.idc.com/。
36. Medical Subject Headings(2011),2011年5月21日取自http://www.nlm.nih.gov/mesh/。
37. Wikipedia(2001),2011年5月21日取自http://www.wikipedia.org/。
|