參考文獻 |
[1] Baeza-Yates, R. A., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. Boston, MA: Addison-Wesley.
[2] Belkin, N., Cool, C., & Koenemann, J. (1996). On the potential utility of negative relevance feedback in interactive information retrieval. Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'96), Zurich, Switzerland.
[3] Bellot, P., & El-Bèze, M. (1999). Query Length, Number of Classes and Routes through Clusters: Experiments with a Clustering Method for Information Retrieval. Proceedings of the 5th International Computer Science Conference on Internet Applications (ICSC'99), 196–205, London, UK.
[4] Bernardini, A., & Carpineto, C. (2008). FUB at TREC 2008 Relevance Feedback Track: Extending Rocchio with Distributional Term Analysis. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[5] Chou, S., & Chang, W. (2008). CyberIR – A Technological Approach to Fight Cybercrime. Lecture Notes in Computer Science, 5075, 32-43.
[6] Croft, W. B. (1981). Document Representation in Probabilistic Models of Information Retrieval. Journal of the American Society for Information Science, 32(6), 451-457.
[7] Dunlop, M. (1997). The effect of accessing non-matching documents on relevance feedback. ACM Transactions on Information Systems, 15(2), 137-153.
[8] He, B., Macdonald, C., Ounis, I., Peng, J., & Santos, R. L. T. (2008). University of Glasgow at TREC 2008: Experiments in Blog, Enterprise, and Relevance Feedback Tracks with Terrier. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[9] Hoashi, K., Matsumoto, K., Inoue, N., & Hashimoto, K. (2000). Document Filtering Method Using Non-Relevant Information Profile. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR 2000), 176-183, Athens, Greece.
[10] Hong, Y., Cai, Q., Hua, S., Yao, J., & Zhu, Q. (2010). Negative Feedback: The Forsaken Nature Available for Re-ranking. Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), 22-27 Aug. 2010, Beijing, China.
[11] Iwayama, M. (2000). Relevance Feedback with a Small Number of Relevance Judgements: Incremental Relevance Feedback vs. Document Clustering. Proceedings of the 23st Annual international ACM SIGIR Conference on Research and Development in information Retrieval (SIGIR 2000), 10–16, Athens, Greece.
[12] Jackson, P., & Moulinier, I. (2002). Natural Language Processing for Online Applications: Text Retrieval, Extraction and Categorization, Amsterdam: John Benjamins.
[13] Kaptein, R., Kamps, J., & Hiemstra, D. (2008). The Impact of Positive, Negative and Topical Relevance Feedback. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[14] Kelly, D., Dollu, V. D., & Fu, X. (2005). The Loquacious User: A Document-Independent Source of Terms for Query Expansion. Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR'05), 457-464, Salvador, Brazil.
[15] Lease, M. (2008). Incorporating Relevance and Psuedo-Relevance Feedback in the Markov Random Field Model. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[16] Li, Y., Algarni, A., Wu, S., & Xu, Y. (2009). Mining Negative Relevance Feedback for Information Filtering. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT'09), 15-18 September 2009, University of Milano, Milan.
[17] Liddy, E. D. (1998). Enhanced Text Retrieval Using Natural Language Processing. Bulletin of the American Society for Information Science, 24(4), 14-16.
[18] Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval, New York, NY: Cambridge University Press.
[19] Meij, E., He, J., Weerkamp, W., & de Rijke, M. (2009). Topical Diversity and Relevance Feedback. Proceedings of the 18th Text REtrieval Conference (TREC 2009), Gaithersburg, MD, USA.
[20] Meij, E., Weerkamp, W., He, J., & de Rijke, M. (2008). Incorporating Non-Relevance Information in the Estimation of Query Models. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[21] Okabe, M., & Yamada, S. (2007). Semisupervised Query Expansion with Minimal Feedback. IEEE Transactions on Knowledge and Data Engineering, 19(11), 1585-1589.
[22] Onoda, T., Murata, H., & Yamada, S. (2006). Non-Relevance Feedback Document Retrieval based on One Class SVM and SVDD. Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN'06), 1212-1219, Vancouver, Canada.
[23] Ponte, J. M., & Croft, W. B. (1998). A Language Modeling Approach to Information Retrieval. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR'98), 275-281, Melbourne, Australia.
[24] Porter, M.F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.
[25] Rocchio, J. (1971). Relevance feedback in information retrieval. In Salton, G. ed., The SMART retrieval system: Experiments in Automatic Document Processing, 313-323, Englewood Cliffs, NJ: Prentice-Hall.
[26] Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 41(4), 288-297.
[27] Salton, G., & Lesk, M. (1968). Computer Evaluation of Indexing and Text Processing, Journal of the ACM, 15(1), 8-36.
[28] Salton, G., & McGill, M. J. (1983). Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill.
[29] Salton, G., Fox, E., & Wu, H. (1983). Extended Boolean Information Retrieval. Communication of the ACM, 26(11), 1022-1036.
[30] Salton, G., Wong, A., & Yang C. S. (1975). A Vector Space Model for Automatic Indexing. Communications of the ACM, 18(11), 613-620.
[31] Singhal, A., Mitra, M., & Buckley, C. (1997). Learning routing queries in a query zone. Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR'97), 25, New York, NY, USA.
[32] Son, K., Lee, J., Park, S., & Lee, S. (2008). Reinforcement Learning Using Negative Relevance Feedback. Proceedings of the 6th International Conference on Advanced Language Processing and Web Information Technology (ALPIT'08), 559-563, Henan, China.
[33] Spärck Jones, K. (1972). A Statistical Interpretation of Term Specificity and its Application in Retrieval. Journal of Documentation, 28(1), 11-21.
[34] Spärck Jones, K. (1995). Reflections on TREC. Information Processing and Managemtns, 31(3), 294.
[35] Tseng, Y. H. (1998). Solving Vocabulary Problems with Interactive Query Expansion. Journal of Library Information Science, 24(1), 1-18.
[36] Voorhees, E.M., & Harman, D. (1997), Overview of the Sixth Text REtrieval Conference (TREC-6). Proceedings of the 6th Text REtrieval Conference (TREC 1997), Gaithersburg, MD, USA.
[37] Vries, A. P. de, & Roelleke, T. (2005). Relevance Information: A Loss of Entropy but a Gain for IDF? Proceedings of the 28th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'05), 282-289, Salvador, Brazil.
[38] Wang, J., & Ye, X. (2010). The Study of Methods for Language Model Based Positive and Negative Relevance Feedback in Information Retrieval. Proceedings of the 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010), 870-873, 29-31 Oct. 2010, Xiamen, China.
[39] Wang, X., Fang, H., & Zhai, C. (2008). A study of methods for negative relevance feedback. Proceedings of the 31st Annual international ACM SIGIR Conference on Research and Development in information Retrieval (SIGIR'08), 219-226, New York, NY, USA.
[40] Wang, X., Fang, H., & Zhai, C. X. (2007). Improve Retrieval Accuracy for Difficult Queries using Negative Feedback. Proceedings of the 16th ACM conference on Conference on information and knowledge management (CIKM'07), 991-994, New York, NY, USA.
[41] Zhang, P., Hou, Y., & Song, D. (2009). Approximating True Relevance Distribution from a Mixture Model based on Irrelevance Data. Proceedings of the 32nd Conference on Research and Development in Information Retrieval (SIGIR'09), 107-114, 19-23 July 2009, Boston, NJ, USA.
|