博碩士論文 984203010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:3.129.71.98
姓名 王怡茹(Yi-ru Wang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 利用負相關回饋資訊以重排序文件檢索結果
(Using Non-relevant Information for Document Re-ranking)
相關論文
★ 信用卡盜刷防治簡訊規則製作之決策支援系統★ 不同檢索策略之效果比較
★ 知識分享過程之影響因子探討★ 兼具分享功能之檢索代理人系統建構與評估
★ 犯罪青少年電腦態度與學習自我效能之研究★ 使用AHP分析法在軟體度量議題之研究
★ 優化入侵規則庫★ 商務資訊擷取效率與品質促進之研究
★ 以分析層級程序法衡量銀行業導入企業應用整合系統(EAI)之關鍵因素★ 應用基因演算法於叢集電腦機房強迫對流裝置佈局最佳近似解之研究
★ The Development of a CASE Tool with Knowledge Management Functions★ 以PAT tree 為基礎發展之快速搜尋索引樹
★ 以複合名詞為基礎之文件概念建立方式★ 利用使用者興趣檔探討形容詞所處位置對評論分類的重要性
★ 透過半結構資訊及使用者回饋資訊以協助使用者過濾網頁文件搜尋結果★ 利用feature-opinion pair建立向量空間模型以進行使用者評論分類之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 對使用者而言,無法在檢索結果的前幾筆資料中,找到所需的資訊是一件相當困擾的事情。資訊檢索系統一直以來存在的問題就是回傳的檢索結果中包含過多不相關的文件,增加使用者查詢上不必要的負擔。在過去的研究中,雖有不少學者以相關回饋的方式來改善檢索的效率,卻未見以負相關回饋的資訊做進一步的探討。因此本研究將相關回饋之負相關文件所隱含之資訊做運用,結合TREC 6資料的特性與字詞的分佈,在傳統文件字詞權重計算方法加入字詞敏感度的概念。利用相關回饋以及負相關回饋文件之字詞出現的情況和頻率找出只在負相關的高頻特徵來建立字典,再利用字典對檢索文件中之字詞進行加權,藉此降低負相關文件與相關資訊的相似度,以幫助檢索結果的重排序,協助使用者快速找到所需的資訊。實驗結果顯示,利用本方法對文件之字詞進行權重調整,能提高檢索結果之P@10至P@100的平均準確率,優於Rocchio演算法的效能。因此,本研究驗證負相關回饋的資訊對於文件重排序是有用的。
摘要(英) Too much non-relevant information retrieved put burden on the user. In past studies, many scholars used relevance feedback to improve document retrieval performance. This paper proposes a method to apply the information of non-relevant documents with TREC 6 data characteristics and term distributions. The proposed method uses the term-appearance situation and term frequency of non-relevant documents to find negative features to create a dictionary, and then uses features of the negative dictionary to adjust term weights of retrieved documents to reduce the weights of non-relevant documents for re-ranking the search result. We compare the proposed method to Rocchio algorithm, the results of our experiment show that P@10 to P@l00 of our purpose method significantly outperforms Rocchio. Therefore, our study verifies that the information of non-relevance feedback can be useful for document re-ranking.
關鍵字(中) ★ 文件重排序
★ 資訊檢索
★ 負相關回饋
關鍵字(英) ★ Information retrieval
★ Non-relevance feedback
★ Document re-ranking
論文目次 目錄 I
圖目錄 II
表目錄 III
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍與限制 2
1.4 論文架構 3
第二章 文獻探討 4
2.1 資訊檢索 4
2.2 相關回饋 5
2.3 字詞敏感度 6
2.4 負相關回饋之相關研究 7
第三章 系統設計 12
3.1 系統架構 12
3.2 特徵擷取 13
3.3 特徵分類 13
3.4 調整文件權重 15
3.5 文件重排序 18
第四章 系統實作與驗證 20
4.1 實驗資料說明 20
4.2 實驗評估準則 26
4.3 實驗設計與流程 28
4.4 實驗結果與分析 30
第五章 結論 38
5.1 結論與貢獻 38
5.2 未來研究方向 39
參考文獻 41
參考文獻 [1] Baeza-Yates, R. A., & Ribeiro-Neto, B. (1999). Modern Information Retrieval. Boston, MA: Addison-Wesley.
[2] Belkin, N., Cool, C., & Koenemann, J. (1996). On the potential utility of negative relevance feedback in interactive information retrieval. Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'96), Zurich, Switzerland.
[3] Bellot, P., & El-Bèze, M. (1999). Query Length, Number of Classes and Routes through Clusters: Experiments with a Clustering Method for Information Retrieval. Proceedings of the 5th International Computer Science Conference on Internet Applications (ICSC'99), 196–205, London, UK.
[4] Bernardini, A., & Carpineto, C. (2008). FUB at TREC 2008 Relevance Feedback Track: Extending Rocchio with Distributional Term Analysis. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[5] Chou, S., & Chang, W. (2008). CyberIR – A Technological Approach to Fight Cybercrime. Lecture Notes in Computer Science, 5075, 32-43.
[6] Croft, W. B. (1981). Document Representation in Probabilistic Models of Information Retrieval. Journal of the American Society for Information Science, 32(6), 451-457.
[7] Dunlop, M. (1997). The effect of accessing non-matching documents on relevance feedback. ACM Transactions on Information Systems, 15(2), 137-153.
[8] He, B., Macdonald, C., Ounis, I., Peng, J., & Santos, R. L. T. (2008). University of Glasgow at TREC 2008: Experiments in Blog, Enterprise, and Relevance Feedback Tracks with Terrier. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[9] Hoashi, K., Matsumoto, K., Inoue, N., & Hashimoto, K. (2000). Document Filtering Method Using Non-Relevant Information Profile. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR 2000), 176-183, Athens, Greece.
[10] Hong, Y., Cai, Q., Hua, S., Yao, J., & Zhu, Q. (2010). Negative Feedback: The Forsaken Nature Available for Re-ranking. Proceedings of the 23rd International Conference on Computational Linguistics (COLING 2010), 22-27 Aug. 2010, Beijing, China.
[11] Iwayama, M. (2000). Relevance Feedback with a Small Number of Relevance Judgements: Incremental Relevance Feedback vs. Document Clustering. Proceedings of the 23st Annual international ACM SIGIR Conference on Research and Development in information Retrieval (SIGIR 2000), 10–16, Athens, Greece.
[12] Jackson, P., & Moulinier, I. (2002). Natural Language Processing for Online Applications: Text Retrieval, Extraction and Categorization, Amsterdam: John Benjamins.
[13] Kaptein, R., Kamps, J., & Hiemstra, D. (2008). The Impact of Positive, Negative and Topical Relevance Feedback. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[14] Kelly, D., Dollu, V. D., & Fu, X. (2005). The Loquacious User: A Document-Independent Source of Terms for Query Expansion. Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR'05), 457-464, Salvador, Brazil.
[15] Lease, M. (2008). Incorporating Relevance and Psuedo-Relevance Feedback in the Markov Random Field Model. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[16] Li, Y., Algarni, A., Wu, S., & Xu, Y. (2009). Mining Negative Relevance Feedback for Information Filtering. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT'09), 15-18 September 2009, University of Milano, Milan.
[17] Liddy, E. D. (1998). Enhanced Text Retrieval Using Natural Language Processing. Bulletin of the American Society for Information Science, 24(4), 14-16.
[18] Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval, New York, NY: Cambridge University Press.
[19] Meij, E., He, J., Weerkamp, W., & de Rijke, M. (2009). Topical Diversity and Relevance Feedback. Proceedings of the 18th Text REtrieval Conference (TREC 2009), Gaithersburg, MD, USA.
[20] Meij, E., Weerkamp, W., He, J., & de Rijke, M. (2008). Incorporating Non-Relevance Information in the Estimation of Query Models. Proceedings of the 17th Text REtrieval Conference (TREC 2008), Gaithersburg, MD, USA.
[21] Okabe, M., & Yamada, S. (2007). Semisupervised Query Expansion with Minimal Feedback. IEEE Transactions on Knowledge and Data Engineering, 19(11), 1585-1589.
[22] Onoda, T., Murata, H., & Yamada, S. (2006). Non-Relevance Feedback Document Retrieval based on One Class SVM and SVDD. Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN'06), 1212-1219, Vancouver, Canada.
[23] Ponte, J. M., & Croft, W. B. (1998). A Language Modeling Approach to Information Retrieval. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR'98), 275-281, Melbourne, Australia.
[24] Porter, M.F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.
[25] Rocchio, J. (1971). Relevance feedback in information retrieval. In Salton, G. ed., The SMART retrieval system: Experiments in Automatic Document Processing, 313-323, Englewood Cliffs, NJ: Prentice-Hall.
[26] Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 41(4), 288-297.
[27] Salton, G., & Lesk, M. (1968). Computer Evaluation of Indexing and Text Processing, Journal of the ACM, 15(1), 8-36.
[28] Salton, G., & McGill, M. J. (1983). Introduction to Modern Information Retrieval. New York, NY: McGraw-Hill.
[29] Salton, G., Fox, E., & Wu, H. (1983). Extended Boolean Information Retrieval. Communication of the ACM, 26(11), 1022-1036.
[30] Salton, G., Wong, A., & Yang C. S. (1975). A Vector Space Model for Automatic Indexing. Communications of the ACM, 18(11), 613-620.
[31] Singhal, A., Mitra, M., & Buckley, C. (1997). Learning routing queries in a query zone. Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development on Information Retrieval (SIGIR'97), 25, New York, NY, USA.
[32] Son, K., Lee, J., Park, S., & Lee, S. (2008). Reinforcement Learning Using Negative Relevance Feedback. Proceedings of the 6th International Conference on Advanced Language Processing and Web Information Technology (ALPIT'08), 559-563, Henan, China.
[33] Spärck Jones, K. (1972). A Statistical Interpretation of Term Specificity and its Application in Retrieval. Journal of Documentation, 28(1), 11-21.
[34] Spärck Jones, K. (1995). Reflections on TREC. Information Processing and Managemtns, 31(3), 294.
[35] Tseng, Y. H. (1998). Solving Vocabulary Problems with Interactive Query Expansion. Journal of Library Information Science, 24(1), 1-18.
[36] Voorhees, E.M., & Harman, D. (1997), Overview of the Sixth Text REtrieval Conference (TREC-6). Proceedings of the 6th Text REtrieval Conference (TREC 1997), Gaithersburg, MD, USA.
[37] Vries, A. P. de, & Roelleke, T. (2005). Relevance Information: A Loss of Entropy but a Gain for IDF? Proceedings of the 28th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval (SIGIR'05), 282-289, Salvador, Brazil.
[38] Wang, J., & Ye, X. (2010). The Study of Methods for Language Model Based Positive and Negative Relevance Feedback in Information Retrieval. Proceedings of the 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010), 870-873, 29-31 Oct. 2010, Xiamen, China. 
[39] Wang, X., Fang, H., & Zhai, C. (2008). A study of methods for negative relevance feedback. Proceedings of the 31st Annual international ACM SIGIR Conference on Research and Development in information Retrieval (SIGIR'08), 219-226, New York, NY, USA.
[40] Wang, X., Fang, H., & Zhai, C. X. (2007). Improve Retrieval Accuracy for Difficult Queries using Negative Feedback. Proceedings of the 16th ACM conference on Conference on information and knowledge management (CIKM'07), 991-994, New York, NY, USA.
[41] Zhang, P., Hou, Y., & Song, D. (2009). Approximating True Relevance Distribution from a Mixture Model based on Irrelevance Data. Proceedings of the 32nd Conference on Research and Development in Information Retrieval (SIGIR'09), 107-114, 19-23 July 2009, Boston, NJ, USA.
指導教授 周世傑(Shih-chieh Chou) 審核日期 2011-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明