參考文獻 |
中文部分
洪振富,2010,距離式特徵於資料自動分類之研究,國立中央大學,碩士論文。
謝欣宏,2002,台鐵司機員排班與輪班問題之研究 – 以基因演算法求解,國立交通大學,碩士論文。
英文部分
D.R. Wilson, T.R. Martinez, 2000. Reduction techniques for instance-based learning algorithms, Machine Learning, Vol. 38, No. 3, pp. 257-286.
G I. Bose, R.K. Mahapatra, 2001. Business data mining ─ a machine learning perspective, Information & Management, Vol. 39, No. 3, pp. 221-225.
U. Fayyad, S.G. Piatetsky, P. Smyth, 1996. Advances in knowledge discovery and data mining, The MIT Press.
J. Han, M. Kamber, 2000. Data mining: concepts and techniques. Morgan Kaufmann.
S.F. Crone, S. Lessmann, R. Stahlbock, 2006. The impact of preprocessing on data mining: an evaluation of classifier sensitivity in direct marketing, European Journal of Operational Research, Vol. 173, No. 3, pp. 781-800.
C.C. Aggarwal, P.S. Yu, 2001. Outlier detection for high dimensional data, in Proc. ACM SIGMOD Int. Conf. Management of Data, Santa Barbara, California, pp. 37-46.
V. Barnett, T. Lewis, 1994. Outliers in statistical data. John Wiley & Son, New York.
T. Reinartz, 2002. A unifying view on instance selection, Data Mining and Knowledge Discovery, Vol. 6, No. 2, pp. 191-210.
J. Yang, S. Olafsson, 2006. Optimization-based feature selection with adaptive instance sampling, Computers & Operations Research, Vol. 33, No. 11, pp. 3088-3106.
J. Li, M.T. Manry, P.L. Narasimha, C. Yu, 2006. Feature selection using a piecewise linear network, IEEE Transactions on Neural Networks, Vol. 17, No. 5, pp. 1101-1115.
I. Guyon, A. Elisseeff, 2003. An introduction to variable and feature selection, Journal of Machine Learnig Research, Vol. 3, pp. 1157-1182.
S. Gunal, R. Edizkan, 2008. Subspace based feature selection for pattern recognition, Information Sciences, Vol. 178, pp. 3716-3726.
A. Kuri-Morales, F. Rodrı’guez-Erazo, 2009. A search space reduction methodology for data mining in large databases, Engineering Applications of Artificial Intelligence, Vol. 22, pp. 57-65.
S. Piramuthu, 2004. Evaluating feature selection methods for learning in data mining applications, European Journal of Operational Research, Vol. 156, pp. 483-494.
C.-F. Tsai, 2009. Feature selection in bankruptcy prediction, Knowledge-Based Systems, Vol. 22, No. 2, pp. 120-127.
J.-S. Wang, J.-C. Chiang, 2008. A cluster validity measure with outlier detection for support vector clustering, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 38, No. 1, pp. 78-89.
D. Fragoudis, D. Meretakis, S. Likothanassis, 2002. Integrating feature and instance selection for text classification, in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 501-506.
J.T. De Souza, R.A.F. Do Carmo, G. Augusto, L. De Campos, 2008. A novel approach for integrating feature and instance selection, in Proc. Int. Conf. Machine Learning and Cybernetics, pp. 374-379.
J. Derrac, S. Garcia, F. Herrera, 2010. A survey on evolutionary instance selection and generation, International Journal of Applied Metaheuristic Computing, Vol. 1, No. 1, pp. 60-92.
M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, A.K. Jain, 2000. Dimensionality reduction using genetic algorithms, IEEE Transactions on Evolutionary Computation, Vol. 4, No. 2, pp. 164-171.
J.R. Cano, F. Herrera, M. Lozano, 2003. Using evolutionary algorithms as instance selection for data reduction: an experimental study, IEEE Transactions on Evolutionary Computation, Vol. 7, No. 6, pp. 561-575.
M. Kudo, J. Sklansky, 2000. Comparison of algorithms that select features for pattern classifiers, Pattern Recognition, Vol. 33, pp. 25-41.
W.B. Powell, 2007. Approximate dynamic programming: solving the curses of dimensionality. Wiley-Interscience.
M. Dash, H. Liu, 1997. Feature selection methods for classifications, Intelligent Data Analysis, Vol. 1, No. 3, pp. 131-156.
Fayyad, U.M., Piatesky, S.G., Smyth, P., 1996. From Data Mining to Knowledge Discovery in Databases, AI Magazine, pp.37-54.
A. Ghosting, S. Parthasarathy, M.E. Otey, 2008. Fast mining of distance-based outliers in high-dimensional datasets, Data Mining and Knowledge Discovery, Vol. 16, pp. 349-364.
J. Derrac, S. Garcia, F. Herrera, 2010. IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule, Pattern Recognition, Vol. 43, pp. 2082-2105.
J.-F. Ramirez-Cruz, V. Alarcon-Aquino, O. Fuentes, L. Garcia-Banuelos, 2006. Instance Selection and Feature Weighting Using Evolutionary Algorithms, in Proc. Int. Conf. Computing, pp. 73-79.
F. Ros, S. Guillaume, M. Pintore, J.R. Chretien, 2008. Hybrid genetic algorithm for dual selection, Pattern Analysis and Applications, Vol. 11, pp. 179-198.
H. Ahn, K.-J. Kim, 2009. Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach, Applied Soft Computing, Vol. 9, No. 2, pp. 599-607.
J.J. Grefenstette, 1986. Optimization of control parameters of genetic algorithms, IEEE Transactions on Systems, Man and Cybernetics, Vol. 16, No. 1, pp. 122-128.
S.-Y. Ho, C.-C. Liu, S. Liu, 2002. Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm, Pattern Recognition Letters, Vol. 23, pp. 1495-1503.
K.J. Kim, I. Han, 2000. Genetic algorithm approach to feature discretization in artificial neural network for the prediction of stock price index, Expert Systems with Applications, Vol. 19, No. 2, pp. 125-132.
L.I. Kuncheva, L.C. Jain, 1999. Nearest neighbor classifier : simultaneous editing and feature selection, Pattern Recognition Letters, Vol. 20, pp. 1149-1156.
H. Byun, S.-W. Lee, 2003. A survey on pattern recognition applications of support vector machines, International Journal of Pattern Recognition and Artificial Intelligence, Vol. 17, No. 3, pp. 459-486.
H. Liu, H. Motoda, 2002. On issues of instance selection, Data Mining and Knowledge Discovery, Vol. 6, pp. 115-130.
N. Jankowski, M. Grochowski, 2004. Comparison of instances selection algorithms I: algorithms survey, in Proc. Int. Conf. Artificial Intelligence and Soft Computing, pp. 598-603.
M. Grochowski, N. Jankowski, 2004. Comparison of instances selection algorithms II: results and comments, in Proc. Int. Conf. Artificial Intelligence and Soft Computing, pp. 580-585.
D.E. Goldberg, 1989. Genetic algorithms in search optimization and machine learning, Addition Wesley.
P.G. Espejo, S. Ventura, F. Herrera, 2010. A survey on the application of genetic programming to classification, IEEE Transactions on Systems, Many, and Cybernetics – Part C: Applications and Reviews, Vol. 40, No. 2, pp. 121-144.
D.L. Wilson, 1972. Asymptotic properties of nearest neighbor rules using edited data, IEEE Transactions on Systems, Man and Cybernetics, Vol. 2, pp. 408-421.
Haupt, L. Randy, S. E. Haupt, 1998. Practical genetic algorithms, Wiley, New York.
M. Gen, R. Cheng, 2000. Genetic algorithms and engineering optimization, John Wiley & Sons.
C. J. C. Burges, 1998. A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, Vol. 2, No. 2.
B. Schlkopf, C. J. C. Burges, A. J. Smola, 1999, Introduction to support vector learning, advances in kernel methods-support vector learning, Cambridge.
Kohavi, R., 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Vol. 2, pp.1137-1145.
Sikora Riyaz, Piramuthu Selwyn, 2007. Framework for efficient feature selection in genetic algorithm based data mining, European Journal of Operational Research, Vol. 180, Issue 2, pp. 723-737.
|