博碩士論文 973306005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.116.14.71
姓名 刁仁康(Ren Kang)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 液晶面板廠之含磷廢水化學混凝處理評估
(Evaluation of Phosphate-containing Wastewater Treated by Chemical Coagulation Process in TFT-LCD Plant)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究案例廠為一TFT-LCD六代廠,該廠建置以高水回收率為目標;製程水回收率90 %、全廠水回收率85 %。也因高水回收率,致使稀釋效果不佳,放流水的磷濃度較同產業偏高。
由案例廠含磷廢水流佈調查,含磷濃度較高的廢水主要來源共有二處:一為製程所直接排放之鋁蝕刻清洗廢水;另一為鋁蝕刻清洗廢水,經混合其他低濃度有機廢水收集後,再經生物處理系統(缺氧/好氧+MBR)及逆滲透過濾處理後,於逆滲透單元所產生的RO濃縮排出水(ROR)。
本研究分別利用氯化鈣、氯化鋁、氯化亞鐵三種混凝劑,進行化學混凝瓶杯試驗操作,處理上述二股實廠廢水。實驗結果顯示,其除磷的最適操作條件分別為:(1)氯化鈣之最適pH值為8、Ca/P比為2.0、(2)氯化鋁之最適pH值為5、Al/P比為1.4、及(3)氯化亞鐵之最適pH值為6、Fe/P比為1.8。鋁鹽和鐵鹽之實驗結果與文獻相同,但氯化鈣在pH值高於9以上,磷的去除效率會減低,此與一般添加石灰在pH值10以上,可得較佳效果,明顯的不同。此外經整體評估比較藥劑成本及操作狀況,於案例廠除磷,以氯化鈣為較佳的混凝藥劑。
比較化學混凝除磷單元於案例廠設置地點,不論設在二股實廠廢水源何處,其化學藥劑及污泥操作費用差異很小,但鋁蝕刻清洗廢水經直接化混後,其水質可能會阻塞後續RO膜,失去水回收效益,且鋁蝕刻清洗廢水之化混單元的工程施作費用較高,經評估水資源效益及工程費用後,將化混單元,設置於案例廠處理RO濃縮水中的磷,為較適之位置。
摘要(英) The wastewater treatment system, installed at a 6th generation of TFT-LCD manufacturing plant, was designed to meet the goal of reaching 90 % process water recovery and 85 % total water recovery. The high percentage of water recovery resulted in losing the dilution efficiency, thus, the effluent phosphorous concentration was much higher compared with the effluent qualities discharged by similar industry.
According to the investigation of phosphorous distribution in various sources of this case plant, it found that there are two major sources of phosphate containing wastewater. One is directly discharge from cleaning process of Al-etching. The other is RO reject (ROR) in which the RO system followed on the anoxic/aerobic coupled with membrane filtration (A/O MBR) process for treating the mixture of raw wastewater from cleaning process of Al-etching and low organic concentration wastewater from other manufacturing processes.
This study intent to investigate the optimum operation conditions for removing the phosphate from the above two sources of wastewater by chemical coagulation jar test using calcium chloride, aluminum chloride, and ferrous chloride as coagulant, respectively. The experimental results revealed that the optimum operating conditions were: (1) pH value was 8 and Ca/P dosage ratio was 2 for calcium chloride; (2) pH value was 5 and Al/P dosage ratio was 1.4 for aluminum chloride; and (3) pH value was 6 and Fe/P dosage ratio was 1.8 for ferrous chloride. The optimum results obtained in this study were fully agreeing with the past studies for aluminum chloride and ferrous chloride as coagulant. However, the phosphate removal efficiency was decreased as the pH value was greater than 9 for calcium chloride as coagulant in this study. This result was completely disagreeing with using lime as common coagulant which the best phosphate removal efficiency generally occurs at pH was above 10. Based on the comparative evaluation of chemical cost and operating condition for the three coagulants, it suggests that calcium chloride is the proper coagulant for removing phosphate in the case plant.
Comparing the chemical cost and waste sludge treatment cost for treating these two phosphate containing wastewater streams, there are insignificant differences for installing chemical coagulation process at either site of wastewater source. However, the wastewater from cleaning process of Al-etching after pretreatment by chemical coagulation, its water qualities may cause clogging of the RO membrane and decreasing the benefits for water recycle and reuse. Meanwhile, the construction cost of chemical coagulation process for phosphate removal from Al-etching wastewater was high. Consequently, the better location for phosphate removal by chemical coagulation process in this case plant should focus on ROR stream.
關鍵字(中) ★ 除磷
★ 化學混凝
★ RO濃縮水
★ 鋁蝕刻廢水
★ TFT-LCD
關鍵字(英) ★ TFT-LCD
★ Al-etching wastewater
★ Chemical Coagula
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiv
第一章 前言 1
1-1研究緣起 1
1-2研究目的 4
第二章 文獻回顧 7
2-1TFT-LCD製程 7
2-2含磷廢水排放特性 8
2-2-1含磷廢水來源 8
2-2-2含磷廢水減量後流佈分析 10
2-3案例廠廢水處理單元除磷能力分析 16
2-4除磷的原理及影響因子 19
2-4-1 化學除磷原理 19
2-4-2常用藥劑及可能之反應機制 19
2-4-3化學除磷影響因子 21
2-4-4生物除磷原理 22
2-4-5生物除磷影響因子 24
2-4-6結晶除磷的原理 25
2-4-7各種除磷技術比較 26
第三章 研究方法 28
3-1研究流程 28
3-2實驗材料 30
3-2-1水樣來源 30
3-2-2實驗設備 32
3-2-3實驗藥品 35
3-3實驗操作方法 36
3-4水質分析方法 37
第四章 結果與討論 39
4-1磷酸鈣化學混凝沉降 39
4-1-1磷酸鈣化學混凝最適pH值 39
4-1-2磷酸鈣化學混凝最適加藥量 42
4-1-3磷酸鈣化學混凝污泥沉降性評估 45
4-2磷酸鋁化學混凝沉降 48
4-2-1磷酸鋁化學混凝最適pH值 48
4-2-2磷酸鋁化學混凝最適加藥量 51
4-2-3磷酸鋁化學混凝污泥沉降性評估 54
4-3磷酸鐵化學混凝沉降 58
4-3-1磷酸鐵化學混凝最適pH值 58
4-3-2磷酸鐵化學混凝最適加藥量 61
4-3-3磷酸鐵化學混凝污泥沉降性評估 64
4-4化學混凝除磷最適條件評估 68
4-4-1最適條件處理後導電度影響 72
4-4-2最適條件處理後污泥沉降效果 73
4-4-3最適條件處理後上澄液狀況及污泥產生量 74
4-5化學混凝除磷效益及應用評估 78
4-5-1化學混凝除磷效益估算 78
4-5-2化學混凝除磷應用評估 81
第五章 結論與建議 87
5-1結論 87
5-2建議 88
參考文獻 89
附錄一 95
附錄二 107
參考文獻 1.Fuh, G. W. and M. Chen, Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial Ecol., Vol. 2(2) , 1975, p. 119-138.
2.U. S. EPA, Chemical aids manual for wastewater treatment faci-lities. EPA 430/9-79-018, 1979.
3.Marais, G., R. E. Lowenthal and I. P. Siebrits, Observations supporting phosphate removal by biological excess uptake – a review. Wat. Sci. Tech., Vol. 15, 1983, p. 15-42.
4.Comeau, Y., K. J. Hall1, R. E. W. Hancock and W. K. Oldham, Biochemical model for enhanced biological phosphorus removal. Wat. Res., Vol. 20(12) , 1986, p. 1511-1521.
5.Arun, V., T. Mino and T. Matsuo, Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems. Wat. Res., Vol. 22(5) , 1988, p. 565-570.
6.Stensel, H. D., Principles of biological phosphorus removal. In: Phosphorus and nitrogen removal from municipal wastewater principles and practice, R. I. Sedlak(ed.), 2rd edn, Lewis publishers, New York, 1991, p. 141-163.
7.Manning, P.G., Murphy, T.P., and Prepas, E.E., “Intensive formation of vivianite in the bottom sediments of mesotrophic narrow lake, alberta”, Canadian Mineralogist 29,1991, p.77-85.
8.Moutin, T., J. Y. Gal, H. El Halouani, B. Picot and J. Bontoux, Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate: Theoretical and experimental results. Wat. Res., Vol. 26(11) , 1992, p. 1445-1450.
9.Jenkins, D., Handout for the workshop of operation and control in activated sludge systems. Graduate Institute of Environmental Engineering, National Central University, 1992.
10.Mann R.A., & Baver H.J. Phosphorus Removal in Constructed Wetlands using gravel industrial waste. Substrata. Wat. Sci. Tech. 27(1), 1993, p.107-113.
11.Bitton, G., Wastewater microbiology. Wiley-Liss, Inc., New York, U.S. 1994.
12.Smolders, G., M.C.M. van Loosdrecht and J.J. Heijnen, A metabolic model for the biological phosphorus removal process. Wat. Sci. Tech., Vol. 31(2) , 1995, p. 79- 93.
13.Mino, T., W. Liu, F. Kurisu and T. Matsuo, Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Wat. Sci. Tech., Vol. 31(2) , 1995, p. 25-34.
14.Barker, P. S. and P. L. Dold, Denitrification behaviour in biological excess phosphorus removal activated sludge systems. Wat. Res., Vol. 30(4) , 1996, p. 769-780.
15.Stumm, W. and Morgan, J.J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed. John Wiley & Sons, Inc., New York, 1996, p.778-783.
16.Galarneau E. and R. Gehr, Phosphorus removal from wastewaters: Experimental and theoretical support for alternative mechanisms. Wat. Res., Vol. 31(2) , 1997, p. 328-338.
17.Boisvert, J. P., T. To, A. Berrak and C. Jolicoeur, Phosphate adsorption in flocculation processes of aluminium sulphate and poly-aluminium-silicate-sulphate. Wat. Res., Vol. 31(8) , 1997, p. 1939-1946.
18.Kuba, T., M. C. M. Van Loosdrecht, F. A. Brandseb and J. J. Heijnen, Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Wat. Res., Vol. 31(4) , 1997, p. 777-786.
19.Rydina, E. and E. B. Welchb, Aluminum dose required to inactivate phosphate in lake sediments. Wat. Res., Vol. 32(10) , 1998, p. 2969-2976.
20.Brdjanovic, D., S. Logemann, Mark C. M. Van Loosdrecht, C. M. Hooijmans1, G. J. Alaerts1 and J. J. Heijnen, Influence of temperature on biological phosphorus removal: process and molecular ecological studies. Wat. Res., Vol. 32(4) , 1998, p. 1035-1048.
21.Mino, T., M. C. M. van Loosdrecht and J. J. Heijnen, Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res., Vol. 32(11) , 1998, p. 3193-3207.
22.Morse, G.K., Brett, S.W., Guy, J.A., and Lester, J.N., “Review: Phosphorus removal and recovery technologies”, The Science of the Total Environment 212, 1998, p.69-81.
23.Battistoni, P., P. Pavan, M. Prisciandaro and F. Cecchi, Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Wat. Res., Vol. 34(11) , 2000, p. 3033-3041.
24.Battistoni, P. et al., “Struvite crystallization: A feasible and reliable way to fix phosphorus in anaerobic supernatants”, Water Research 34(11) , 2000, p.3033-3041.
25.Münch, E. V. and K. Barr, Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Wat. Res., Vol. 35(1) , 2001, p. 151-159.
26.Stratful, I., Scrimshaw, M.D., and Lester, J.N., “Conditions influencing the precipitation of magnesium ammonium phosphate”, Wat. Res. 35(17) , 2001, p.4191–4199.
27.Suzuki, K., Y. Tanaka, T. Osada and M. Waki, Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Wat. Res., Vol. 36(12) , 2002, p. 2991-2998.
28.Battistoni, P., A. De Angelis, M. Prisciandaro, R. Boccadoro and D. Bolzonella, P removal from anaerobic supernatants by struvite crystallization: long term validation and process modeling. Wat. Res., Vol. 36(8) , 2002, p. 1927-1938.
29.Saito, T., D. Brdjanovic and M.C.M. van Loosdrecht, Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Wat. Res., Vol. 38(17) , 2004, p. 3760-3768.
30.Chen, Y., Y. Chen, Q. Xu, Q. Zhou, G. Gu, Comparison between acclimated and unacclimated biomass affecting anaerobic-aerobic transformations in the biological removal of phosphorus. Process Biochem., Vol. 40, 2005, p. 723-732.
31.Katsuya Kaikake et al., Phosphate recovery from phosphorus-rich solution obtained from chicken mamure incineration ash, Waste Management, Volume 29, issue 3, March 2009, p.1084-1088.
32.Inglezakis, V.J., Stylianou, M., and Loizidou, M., “Hydrodynamic Studies on Zeolite Fluidized Beds”, INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 8, A126, 2010.
33.劉志忠,流體化床結晶法去除水中磷酸鹽之研究,碩士論文,國立中央大學環境工程研究所,1997。
34.邱維、張智,城市污水化學除磷的探討。重慶環境科學,第24卷第2期,p. 81-84, 2002.
35.徐豐果、羅建中、凌定勳,廢水化學除磷的現狀與進展。工業水處理,第23卷第5期,p.18-20, 2003.
36.行政院環境保護署,事業廢水污染預防及防治管理工作計畫 期末報告,計畫編號:EPA-94-G103-02-202,p. 89-90, 2005.
37.鄭敏、張代均,廢水化學法脫氮和化學法除磷的研究。科技情報開發與經濟,第16卷第1期,p.154-156, 2006.
38.李京雄、孫水裕、苑星海,城市生活污水化學除磷試劑的應用比較。廣東微量元素科學,第13卷第1期,p.19-22, 2006.
39.熊國祥、羅建中、馮愛坤,廢水除磷技術與研究動態。工業安全與環保,第32卷第10期,p. 19-21, 2006.
40.行政院環境保護署。半導體業研磨廢水及光電業廢水水質特性分析及管制標準探討計畫,未出版,2007。
41.張鈞期,不同金屬藥的流體化床結晶技術處理含磷廢水之研究碩士論文,國立成功大學化學工程研究所,2007。
42.阮國棟,張宣武,孫鴻玲,吳婉怡,林燕柔,涂舒宣,徐維駿,「磷的回收技術及其資源再生效益」,行政院環保署,環境科技論壇,2010。
43.友達光電股份有限公司。線上檢索日期:2012 年4 月21 日。網址:http://www.auo.com/?sn=47&lang=zh-TW
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2012-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明