參考文獻 |
吳俊澤,2007:利用MM5 4DVAR 模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響。國立中央大學,大氣物理研究所,碩士論文,70 頁。
陳舒雅,2008:GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文,137 頁。
蔡金成,2009:衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響。國立中央大學,大氣物理研究所,碩士論文,87 頁。
黃振星, 2010: 同化FORMOSAT-3/COSMIC及Follow-on 掩星觀測資料對颱風預報之影響。國立中央大學,大氣物理研究所,碩士論文,101頁。
吳乙昕,2011: 凡那比颱風(2010)降雨機制探討。國立中央大學,大氣物理研究所,碩士論文,89頁。
Barker, D., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914.
Chen, F., and J.Dudhia, 2001: Coupling and advanced land-surface/ hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569-585.
Dudhia, J. (1989): Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 46, 3077-3107.
Fujita, T., 1952: Pressure distribution within a typhoon. Geophys. Mag., 23, 437-451.
Gauthier, P., and J.-N. Thepaut, 2001: Impact of the digital filteras a weak constraint in the preoperational 4DVAR assimilation system of Meteo France. Mon. Wea. Rev., 129, 2089–2102.
Guo, Y.-R., Y.-H.,Kuo, J. Dudhia, D. Parsons, and C., Rocken, 2000: Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon. Wea. Rev., 128, 619-643.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc.,42, 129–151.
Hong, S.-Y., and H.-L. Pan, 1996:Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 2322-2339.
Hu, M., M. Xue, J. Gao, and K. Brewster, 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 675–698.
Huang, X.-Y., Q. Xiao, W. Huang, D. M Barker, J. Michalakes, J. Bray, Z. Ma, Y.-R., Guo, H.-C. Lin, and Y.-H. Kuo, 2006. Preliminary results of WRF 4D-Var. WRF users’ workshop, Boulder, Colorado, 19-22 June 2006.
Huang, X.Y., Q. Xiao, D.M. Barker, X. Zhang, J. Michalakes, W. Huang, T. Henderson, J. Bray, Y. Chen, Z. Ma, J. Dudhia, Y. Guo, X. Zhang, D.J. Won, H.C. Lin, and Y.H. Kuo, 2009: Four-Dimensional Variational Data Assimilation for WRF: Formulation and Preliminary Results. Mon. Wea. Rev., 137, 299–314.
Kain, J. S., and J. M. Fritsch, 1993:Convective parameterization for mesoscale models:The Kain-Fritsch scheme, The representation of cumulus convection in numerical models. K.A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc., 246 pp.
Kawabata J., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensiojnal variational data assimilation system, J. Meteor. Soc. Japan, 85, 255-276.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791-2801.
Lin, H. H., P. L. Lin, Q. Xiao, and Y. H. Kuo, 2011: Effect of Doppler radial velocity data assimilation on the simulation of a typhoon approaching Taiwan: A case study of Typhoon Aere (2004). Terr. Atmos. Ocean. Sci., 22, 325-345, doi: 10.3319/TAO.2010.10.08.01(A)
Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019–1034.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997:Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102(D14), 16663-16682.
Monin,A.S. and A.M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci.,USSR, 151, 163-187.
Neumann, C. J., 1993: Global overview. Chapter 1, Global Guide to Tropical Cyclone Forecasting. WMO, 1.1-1.56.
Park K. amd X. Zou, 2004: Toward developing an objective 4DVAR BDA scheme for hurricane initialization based on TPC observed parameters. Mon. Wea. Rev., 132, 2054-2069.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR technical note NCAR/TN–468+STR,100 pp.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR technical note NCAR/TN–475+STR, 113 pp.
Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of threedimensional wind andtemperature fields from simulated single-Doppler radar data. J. Atmos. Sci. ,48, 876–890.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci. , 54, 1642–1661.
Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci. , 55, 835–852.
Sun, J., 2005a: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793–813.
Sun, J., and Y., Zhang, 2007: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364-2388.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon.Wea. Rev., 131, 1663–1677.
Weygandt, S., A. Shapiro, and K. Droegemier, 2002a: Retrieval of model initial fields from single-Doppler observations of a supercell thunderstorm. Part I: Single-Doppler velocity retrieval. Mon. Wea. Rev., 130, 433–453.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons Affecting Taiwan: Current Understanding and Future Challenges. Bull. Amer. Meteor. Soc. , 80, 67-80.
Wu, C. –C., 2001:Numerical simulation of Typhoon Gladys(1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon Wea. Rev., 129, 1533-1549.
Wu, C.-C., K.-H. Chou, Y. Wang and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.
Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariance. Mon. Wea. Rev., 130, 2905-2916.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, D. M. Barker, 2005: Assimilation of Doppler radar observations with a Regional 3D-Var system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Met. , 44, 768-78.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An Approach of Radar Reflectivity Data Assimilation and Its Assessment with the Inland QPF of Typhoon Rusa (2002) at Land fall. J. Appl. Meteor. Climat. , 46, 14-22.
Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landing hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128, 2252-2269.
Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a varitional bogus data assimilation scheme. J. Atmos. Sci., 57, 836-860.
Zhao, Q., and Y. Jin, 2008: High-resolution radar data assimilation for hurricane Isabel (2003) at landfall. Bull. Amer. Meteor. Soc ., 89, 1355-1372.
|