參考文獻 |
高晟傑,2012:利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事
件 預報之影響。國立中央大學大氣物理研究所碩士論文,70頁。
連國淵,2009:颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學大
氣科學研究所碩士論文,87頁。
陳新淦,2011:颱風策略性觀測理論之特徵分析與驗證-駛流敏感共軛向量系集
變換卡爾曼濾波器。國立台灣大學大氣科學研究所博士論文,122頁。
Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropical cyclone track
and intensity forecasts using the GFDL initialization system. Mon. Wea. Rev., 121, 2046–2061.
Buckingham, C. , T. Marchok, I. Ginis, L. Rothstein and D. Rowe,2010:Short- and Medium-Range
Prediction of Tropical and Transitioning Cyclone Track within the NCEP Global Ensemble Forecasting System, Wea. Forecasting, 25, 736-75
Caya C, Sun J, Snyder C. 2005. A comparison between the 4D-VAR and the Ensemble Kalman Filter
techniques for radar data assimilation. Mon. Weather Rev. 133: 3081–3094.
Chen, Y., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter. Mon. Wea.
Rev., 135, 1828–1845.
Chou,K.-H.,C.C.Wu et al.,2011:The Impact of Dropwindsonde Observation on Typhoon Track
Forecasts in DOTSTSR and T-PARC. Mon. Wea. Rev., 139, 1728–1743.
Elsberry, R. L., and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science
basis, observational platforms, and strategy. Asia-Pac. J. Atmos. Sci., 44, 209–231.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model usingMonte
Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162.
——, 2003: The ensemble Kalman filter: Theoretical formulationand practical implementation.
Ocean Dyn., 53, 343–367.
Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon
Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662–674.
Hunt,E.J.Kostelich, and I,Szunyogh,2007:Efficient data ssimilation for spatiotemporal
chaos:A local ensemble transform Kalman filter. Physica D,230,112-126
Kalnay E, S.-C. Yang. 2010: Accelerating the spin-up of Ensemble Kalman Filter. Q.J.R.
Meteorol. Soc. 136: 1644-1651.
——, Y. Ota, T. Miyoshi, J. Liu. 2012: A Simpler Formulation of Forecast Sensitivity to Observations:
Application to Ensemble Kalman Filters. Tellus, in press.
Kunii, M., T. Miyoshi, and E. Kalnay, 2012: Estimating impact of real observations in regional numerical
weather prediction using an ensemble Kalman filter. Mon. Wea. Rev., 140, 1975-1987.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by
vortex specification. Mon. Wea. Rev., 121, 2030–2045.
——,——, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system.
Mon. Wea. Rev., 123, 2791–2801.
——, R. E. Tuleya, and M. A. Bender, 1998: The GFDL hurricane prediction system and its
performance in the 1995 hurricane season. Mon. Wea. Rev., 126, 1306–1322.
Langland, R. H., and N. Baker, 2004: Estimation of observation impact using the NRL atmospheric
variational data assimilation adjoint system. Tellus, 56A, 189–201.
Li, H., J. Liu, and E. Kalnay, 2010: Correction of ‘Estimating observation impact without adjoint model in
an ensemble Kalman filter.’ Quart. J. Roy. Meteor. Soc., 136, 1652–1654.
Liu, J., and E. Kalnay, 2008: Estimating observation impact without adjoint model in an ensemble
Kalman filter. Quart. J. Roy.Meteor. Soc., 134, 1327–1335.
Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with
the local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519–1535.
——, and M. Kunii, 2011: The local ensemble transform Kalman filter with the Weather Research
and Forecasting model: Experiments with real observations. Pure Appl. Geophys., 169, 321-333.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005:
A description of the Advanced Research WRF version 2. NCAR Tech. Note TN-468_STR, 88 pp.
Torn, R. D., G. J. Hakim, and C. Snyder, 2006: Boundary conditions for limited-area
ensemble Kalman filters. Mon. Wea. Rev., 134, 2490–2502.
——, and ——, 2009: Ensemble data assimilation applied to RAINEX observations of Hurricane
Katrina (2005). Mon. Wea. Rev., 137, 2817–2829.
Park, K., and X. Zou, 2004: Toward developing an objective 4DVAR BDA scheme for hurricane
initialization based on TPC observed parameters. Mon. Wea. Rev., 132, 2054–2069.
Pu, Z.-X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional
variational data assimilation. Mon. Wea. Rev., 129, 2023–2039.
Weissmann, M., and Coauthors, 2011: The influence of assimilating dropsonde data on typhoon track
and midlatitude forecasts. Mon. Wea. Rev., 139, 908–920.
Wu, C.-C., K.-H. Chou, Y. Wang, and Y.-H. Kuo, 2006: Tropical cyclone initialization and prediction
based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.
——, G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure
based on the ensemble Kalman filter (EnKF). J. Atmos. Sci., 67, 3806–3822.
——, Yi-Hsuan Huang, Guo-Yuan Lien, 2012: Concentric Eyewall Formation in Typhoon Sinlaku
(2008). Part I: Assimilation of T-PARC Data Based on the Ensemble Kalman Filter (EnKF).
Monthly Weather Review 140, 506-527.
Yang S-C, Corazza M, Carrassi A, Kalnay E, MiyoshiT. 2009. Comparison of ensemble-based
and variational-based data assimilation schemes in a quasi-geostrophic model. Mon. Wea. Rev. 137: 639–709.
——, E. Kalnay and T. Miyoshi, 2012: Accelerating the EnKF Spinup for Typhoon Assimilation and
Prediction, Wea. Forecasting, 27, 878–897.
|