博碩士論文 986206008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:154 、訪客IP:18.117.162.117
姓名 程國榮(Guo-rong Cheng)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 應用年月尺度水平衡模式於石門與翡翠水庫入流量推估
(Applications of Monthly and Annual Water Balance Models for Estimating Inflows of the Shihmen and Feittsui Reservoirs)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石門水庫與翡翠水庫為北台灣重要水庫,供應北部地區主要民生、工業與農業用水,近年來經濟社會之快速發展增加水資源之需求,氣候變異則對水庫管理帶來挑戰。水資源的規劃管理需要明瞭水文量長期變化與特徵,並不一定需要使用繁雜之分散式模式來達成目的,透過年月尺度之水文模式即可估算水庫入流量長期變化,對水資源規劃與管理提供基本資料所需。本研究應用月尺度水文模式即年尺度經驗公式,估算石門集水區與翡翠水庫集水區入流量,主要分為:(1)在不考慮集水區地表下水儲蓄變化,根據Budyko(1974)假設,以水平衡方程式推估入流量年變化趨勢。(2)在月尺度部分,利用 Thornthwaite Mather Water Balance(TMWB) 模式模擬水庫集水區月尺度入流量變化。
研究中使用石門水庫與翡翠水庫集水區的流量與氣象站資料,檢定模擬結果並分析年月入流量變化趨勢。結果顯示:(1) 應用Hamon潛勢能蒸發散公式與傅抱璞蒸發散估算之組合在年逕流模擬準確度較高。 (2) TMWB模式也可以掌握月逕流趨勢。但不論是年或月尺度之模式對於極端事件之模擬較難掌握,推論主要原因為潛勢能蒸發散高估。因此在潛勢能蒸發散計算中則加入折算係數,並進一步針對TMWB模式加入含水層與基流概念,提高模式對極端事件逕流模擬之掌握能力。結果顯示修正後之TMWB模式可以解決原先連續乾旱或極端降雨月份的模擬明顯低估的問題,符合二集水區實際逕流趨勢。
此外考慮使用者在收集大量的水文資料之後,還需要花時間進行複雜的模式檢定工作,因此透過Microsoft Visual Studio 2012 RC,發展圖形化使用者介面(GUI)。透過介面只需輸入水文資料與簡單的操作,即可得到模擬結果與其相關程度。
摘要(英) Both the Shihmen and Feitsui Reservoirs are the most important reservoirs in northern Taiwan providing water resources for domestic, industrial and agricultural usages. Booming social and economic developments in recent years requires increasing demands of water resources. On the other hand, climate variability brought challenges on reservoir managements. Predicting long-term variability and characteristics of reservoir inflows are essential to water resources planning and managements, which are not necessary to be estimated by distributed hydrological models. Monthly and Annual hydrological models provide alternative approach with simplicity to understand long-term inflow variations of watershed to support water resources planning and management. In this study, we applied monthly and annual water balance model to estimate inflows of the Shihmen and Feitsui Reservoirs. For annual scales, the water balance equation was given based on the Budyko assumptions by neglecting changes of subsurface storages. For monthly scales, the Thornthwaite - Mather Water Balance (TMWB) model was employed to estimate reservoir inflows.
In this study, we collect the Shihmen and Feitsui Reservoir inflow and meteorological data for model calibrations. Result showed that the combination of Hamon equation (for estimating potential evapotranspiration) and Fu equation (for estimating evapotranspiration) provided the best skill on estimating annual reservoir inflows. The TWMB has skills on estimating monthly reservoir inflows. However, both monthly and annual water balance approaches underestimated inflows of extreme events. Overestimations of potential evapotranspiration were suggested to be the cause of less skill on extreme events. A reduction coefficient was proposed to modify the amount of potential evapotranspiration estimated in both monthly and annual water balance models. For the TMWB model, a layer of subsurface storage was added with a base flow coefficient. Results showed modifications proposed slightly improve the skills of both approaches on estimating reservoir inflows.
In order to ease complicated calibration processes, a Graphical User Interface of models employed in this study was developed via the Microsoft Visual Basic 2012 RC to provide a user friendly interface with simultaneous and instantaneous graph drawing capability.
關鍵字(中) ★ 逕流模擬
★ 集水區
★ 潛勢能蒸發散
★ TMWB
★ Budyko架構
關鍵字(英) ★ TMWB
★ Potential Evapotranspiration
★ Reservoir
★ Runoff Simulation
★ Budyko Framework
論文目次 目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 X
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 研究目的 3
1.3 研究內容與架構 3
第二章 文獻回顧 6
2.1 水平衡方程式 6
2.2 長期水平衡方法 7
2.3 集塊式水平衡模式 10
第三章 研究方法與模式介紹 14
3.1 潛勢能蒸發散估算(Potential Evapotranspiration) 14
3.1.1 Thornthwaite Equation 14
3.1.2 Hamon Equation 15
3.1.3 Malmstrom Equation 16
3.1.4 Holland Equation 16
3.2 Thornthwaite-Mather Water Balance Model 17
3.3年平均水平衡收支模式 19
3.3.1 Budyko Framework 20
3.3.2 蒸發散經驗公式 22
3.3.3 傅抱璞公式 24
3.4 檢定方法 25
第四章 研究區域簡介 27
4.1 石門水庫集水區 27
4.1.1 集水區簡介 27
4.1.2 水庫概述 27
4.1.3 集水區水文分析 28
4.2 翡翠水庫集水區 33
4.2.1 集水區簡介 33
4.2.2 水庫概述 34
4.2.3 集水區水文分析 35
第五章 結果與討論 41
5.1 研究區域現況模擬 41
5.1.1 年入流量模擬 41
5.1.2 月入流量模擬 49
5.1.3 綜合比較 59
5.2 TMWB模式之修正 63
5.3 修正後模擬結果比較 67
5.3.1 修正後逕流深度結果分析比較 69
5.3.2 修正後潛勢能蒸發散結果分析比較 71
5.3.3 蒸發散計算 72
5.3.4 降雨-逕流分析 74
第六章 結論與建議 75
6.1 結論 75
6.2 建議 76
參考文獻 77
附錄A 使用者介面介紹 83
初始資料設定 84
A1. Monthly Model 86
A2. Annual Model 90
附錄B 傅抱璞公式推導 92
圖目錄
圖1-1 研究流程 5
圖2-1 簡易水桶模式 8
圖2-2 Thornthwaite Mather Water Balance model 11
圖2-3 Alley’s TMWB Model 12
圖3-1 TMWB模式模擬流程 19
圖3-2年尺度水平衡模式模擬流程 20
圖3-3長時間尺度下降雨(P)、蒸發散(ET)及潛勢能蒸發散(PET)關係 21
圖4-1石門集水區地形高程其所選測站 28
圖4-2石門水庫集水區最大、最小與平均降雨量(1977~2010) 29
圖4-3石門水庫集水區月平均雨量(1977~2010) 30
圖4-4石門水庫集水區各年降雨與歷年平均值距平圖 30
圖4-5石門水庫集水區最大、最小與平均逕流深度(1977~2010) 31
圖4-6石門水庫集水區月平均降雨量與逕流深度(1977~2010) 31
圖4-7石門水庫集水區月逕流深度與降雨量(1977~2010) 32
圖4-8石門水庫集水區歷年降雨量與逕流深度 33
圖4-9 翡翠水庫集水區概況圖 34
圖4-10翡翠水庫集水區最大、最小與平均降雨量(1989~2011) 36
圖4-11翡翠水庫集水區月平均雨量(1989~2011) 36
圖4-12翡翠水庫集水區各年降雨與歷年降雨平均值距平圖 37
圖4-13翡翠水庫集水區最大、最小與平均逕流深(1989~2011) 38
圖4-14翡翠水庫集水區月平均降雨量與逕流深(1989~2011) 38
圖4-15翡翠水庫集水區月逕流深度與降雨量(1989~2011) 39
圖4-16翡翠水庫集水區歷年降雨量與逕流深度 40
圖5-1 石門水庫集水區Hamon-Fu模式模擬對觀測年逕流深度關係 43
圖5-2 石門水庫集水區Hamon-Fu模式模擬與觀測年逕流深度 43
圖5-3 石門水庫集水區各蒸發散公式推估蒸發散比值(ET/P)對照乾燥指數(PET/P)關係 44
圖5-4 石門水庫集水區各蒸發散公式比較 45
圖5-5 Holdridge Life Zones 45
圖5-6 翡翠水庫集水區Hamon-Fu模式模擬與觀測年逕流深度關係 47
圖5-7 翡翠水庫集水區Hamon-Fu模式模擬與觀測年逕流深度 47
圖5-8 翡翠水庫集水區各蒸發散公式推估蒸發散比值(ET/P)對照乾燥指數(PET/P)關係 48
圖5-9 翡翠水庫集水區各經驗公式比較 48
圖5-10石門水庫集水區實際月逕流值與TMWB模式結果相比 50
圖5-11石門水庫集水區乾季觀測與TMWB模擬逕流深度 51
圖5-12石門水庫集水區濕季觀測與TMWB模擬逕流深度 51
圖5-13石門水庫集水區不同潛勢能蒸發散公式各月計算結果 52
圖5-14石門水庫集水區TMWB模式準確度對應於模式參數Soilmax之反應 53
圖5-15石門水庫集水區TMWB模式準確度對應於模式參數λ之反應 54
圖5-16 翡翠水庫集水區實際月逕流值與TMWB模式結果相比 55
圖5-17 翡翠水庫集水區乾季觀測與TMWB模擬逕流深度 56
圖5-18 翡翠水庫集水區濕季觀測與TMWB模擬逕流深度 56
圖5-19翡翠水庫集水區不同潛勢能蒸發散公式各月計算結果 57
圖5-20 TMWB模式準確度對應模式參數Soilmax在翡翠水庫集水區之反應 58
圖5-21 TMWB模式準確度對應模式參數λ在翡翠水庫集水區之反應 58
圖5-22 石門水庫集水區TMWB、Hamon-Fu模擬與觀測年逕流深度 60
圖5-23翡翠水庫集水區TMWB、Hamon-Fu模擬與觀測年逕流深度 60
圖5-24 石門水庫集水區各月平均觀測與TMWB模式模擬逕流深度 61
圖5-25 翡翠水庫集水區各月平均觀測與TMWB模式模擬逕流深度 62
圖5-26 翡翠水庫集水區Thornthwaite – Ol’dekop模式模擬逕流深度 63
圖5-28石門水庫集水區各月平均觀測與各模式模擬逕流深度 70
圖5-29翡翠水庫集水區各月平均觀測與各模式模擬逕流深度 70
圖5-30修正後潛勢能蒸發散公式於石門水庫集水區各月計算結果 71
圖5-31修正後潛勢能蒸發散公式於翡翠水庫集水區各月計算結果 72
圖5-32 Model2模擬蒸發散與石門水庫集水區降雨量之比例 73
圖5-33 Model2模擬蒸發散與翡翠水庫集水區降雨量之比例 73
圖5-34 石門水庫集水區各月平均降雨逕流與模擬逕流 74
74
圖5-35 翡翠水庫集水區各月平均降雨逕流與模擬逕流 74
圖A-1 Model2 – GUI 83
圖A-2 Model2 – GUI架構 84
圖A-3 輸入資料 85
圖A-4 輸入資料 85
圖A-5 逕流資料 86
圖A-6 Model2模擬與繪製其時間序列圖範例 88
圖A-7 Model2模擬結果預覽範例1 89
圖A-8 Model2模擬結果預覽範例2 89
圖A-10 Annual Model - GUI起始頁面 91
表目錄
表3-1 台灣北部每月平均日照時數(范純志,1998) 15
表4-1石門集水區換算月平均氣溫(℃) (1977~2010) 29
表4-1 台北氣象站與翡翠集水區換算月平均氣溫(℃) (1989~2011) 35
表5-1 石門水庫集水區年觀測對ET與PET公式組合模擬R比較 42
表5-2 翡翠水庫集水區年觀測對ET與PET公式組合模擬R比較 46
表5-3觀測月逕流深度對TMWB模式模擬結果比較 50
表5-4翡翠水庫集水區觀測月逕流深度對TMWB模式模擬結果比較 55
表5-5石門水庫集水區各月平均觀測與TMWB模式模擬逕流深度 61
表5-6翡翠水庫集水區各月平均觀測與TMWB模式模擬逕流深度 62
表5-7石門水庫集水區觀測月逕流深度對Model2模擬結果比較 67
表5-8翡翠水庫集水區觀測月逕流深度對Model2模擬結果比較 67
表5-9 石門水庫集水區年觀測對ET與PET公式組合模擬R比較 68
表5-10 翡翠水庫集水區年觀測對ET與PET公式組合模擬R比較 69
參考文獻 1. 經濟部水利署(http://www.wra.gov.tw/)。
2. 經濟部水利署北區水資源局(http://www.wranb.gov.tw/)。
3. 臺北翡翠水庫管理局(http://www.feitsui.gov.tw/)。
4. 臺灣大百科全書(http://taiwanpedia.culture.tw/web/index)。
5. 農業委員會水土保持局(http://www.swcb.gov.tw/index.asp)。
6. 傅抱璞,1981,「论陆面蒸发的计算」,大气科学,第5期。
7. 熊立华、郭生练、付小平、王渺林,1996,「两参数月水量平衡模型的研制和应用」,水科学进展,第S1期。
8. 楊萬全,2000,認識淡水河流域的水文,「台灣水文論文集」。
9. 李光敦,2002,「水文學」,五南圖書出版公司出版。
10. 徐義人,2003,「應用水文學」,國立編譯館出版,大中國圖書公司印行。
11. 丘逸民,2003,「從世界氣候分類系統看中國大陸與蒙古的氣候區劃(2):桑士偉分類法」,師大地理研究報告,第39期。
12. 游保杉,2004,「水文循環與洪水」,科學發展,第374期。
13. 乐通潮、张万昌,2004,「双参数月水量平衡模型在汉江流域上游的应用」,资源科学,26卷第6期。
14. 葉信富、陳進發、李振誥 ,2005,「潛勢能蒸發散經驗公式之最佳化比較」, 農業工程學報, 第51卷, 第一期,pp.27-37。
15. 余文利,2005,「翡翠水庫集水區水文分析」,國立中央大學水文與海洋科學研究所碩士論文。
16. 郭俊超,2005,「結合季節雨量與水文模式於枯水期旬流量預測」,國立成功大學水利及海洋工程學系博士班論文。
17. 孙福宝、杨大文、刘志雨、丛振涛、雷志栋,2007,「海河及西北内陆河流域的水热平衡研究」,水文,第2期。
18. 胡庆芳、王银堂、刘克琳、王宗志,2007,「基于改进的两参数月水量平衡模型的月径流模拟」,河海大学学报(自然科学版)。
19. 林思達,2009,「改良GWLF模式應用於翡翠水庫入流量模擬」,國立中央大學水文與海洋科學研究所碩士論文。
20. 曾小凡、周建中,2010,「长江流域年平均径流对气候变化的响应及预估」,人民長江,第12期。
21. 柯婷婷、束龙仓、焦莹、任化准,2011,「基于傅抱璞公式的Budyko假说在月尺度上推导及其应用」,水利水电科技进展,第31卷,第4期。
22. 李帅、熊立华、万民,2011,「水量平衡模型的比较研究」,水文,第5期。
23. 蔡安源,2011,「氣候變遷對台灣區域水資源衝擊之研究」,國立臺灣海洋大學河海工程學系博士學位論文。
24. Alley, W. M., 1984, “On the treatment of evapotranspiration, soil moisture accounting, and aquifer recharge in monthly water balance models”, Water Resources Research, v. 20:1137–1149.
25. Arora, V. K., 2002, “The use of the aridity index to assess climate change effect on annual runoff”, Journal of Hydrology, 265:164-177.
26. Brutsaert, W., M. B. Parlange, 1998, “Hydrologic cycle explains the evaporation paradox”, Nature,VOL. 396.
27. Brutsaert, W., 2005, “Hydrology”.
28. Budyko, M. I., 1948, “Evaporation under natural conditions”, Gidrometeorizdat, Leningrad, English translation by IPST, Jerusalem.
29. Budyko, M. I., 1974, “Climate and Life”, International Geophysics Series, vol. 18, Academic, New York: 508.
30. Choudhury, B. J., 1999, “Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model”, Journal of Hydrology, Volume 216, Issues 1–2, 8 March: 99–110.
31. Cunha, A. R. D., E. R. Schoffel, 2011, “The Evapotranspiration in Climate Classification”, Evapotranspiration - From Measurements to Agricultural and Environmental Applications.
32. Dingman, S. L., 2002, “Physical Hydrology”, 2nd ed, New Jersey: Prentice Hall.
33. Domenico, P. A., F. W. Schwartz, 1997, “Physical and Chemical Hydrogeology”, 2nd ed, Wiley.
34. Donohue, R. J., M. L. Roderick, T.R. McVicar, 2010, “Can dynamic vegetation information improve the accuracy of Budyko’s hydrological model? ”, Journal of Hydrology, 390:23–34.
35. Georgakakos, A., H.M. Yao, A. Tidwell, 2005, “Study on Water Management of Lake Victoria”, Climate Change Impact Assessment, Technical Report 10.
36. Gleik, P. H., 1986, “Methods for evaluating the regional hydrologic inpacts of global climatic changes”, Journal of Hydrology, 88: 97–116.
37. Faybishenko, B., 2012, “Fuzzy-Probabilistic Calculations of Evapotranspiration”, Evapotranspiration - Remote Sensing and Modeling.
38. Fish, R. E., 2011, “Using Water Balance Models to Approximate the Effects of Climate Change on Spring Catchment Discharge: Mt. Hanang, Tanzania”, Master of Science in Geology.
39. Fraedrich, K., 2010, “A Parsimonious Stochastic Water Reservoir: Schreiber’s 1904 Equation”, American Meteorological Society.
40. Hamon, W. R., 1961, “Estimating potential evapotranspiration”,Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, v. 87:107–120.
41. Holland, H. D., 1978, “The Chemistry of the Atmosphere and Oceans” John Wiley & Sons, New York: 351.
42. Krahe, P., K. Daamen, R. Mulders, K. Wilke, 1997, “GIS -related baseflow simulation for water balance and precipitation-runoff modelling in the River Rhine basin”, Remote Sensing and Geographic Information Systems for Design and Operation of Water Resources Systems, IAHS Publ. no. 242.
43. Li, M. H., W. T. Tien, C. P. Tung, 2009, “Assessing the impact of climate charge on the land hydrology in Taiwan”, Paddy Water Environ, 7:283-292.
44. Liu, S.W., T. H. Eric, D. Stein, J. Barco, 2011, “Contemporary and Historical Hydrologic Analysis of the Ballona Creek Watershed”, Technical Report, 683.
45. Malmstrom, V. H., 1969, “A new approach to the classification of climate”,Journal of Geography, v. 68, Issue 6:351–357.
46. McCabe, G. J., S. L. Markstrom, 2007, “A Monthly Water-Balance Model Driven By a Graphical User Interface”, Open-File Report 2007–1088, U.S. Geological Survey.
47. McNutt, M. K., 2010, ” SWB—A Modified Thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge”, Techniques and Methods 6–A31, U.S. Geological Survey.
48. Ol’dekop, E. M., 1911,“On evaporation from the surface of river basins (in Russian) ” ,Transactions on Meteorological Observations,University of Tartu Rep. 4: 200.
49. Pike, J. G., 1964, “The estimation of annual runoff from meteorological data in a tropical climate”, Journal of Hydrology, 2:116-123.
50. Rees, H. G., K. M. Croker, N. S. Reynard, A. Gustard, 1997, “Estimation of renewable water resources in the European Union”, Institute of Hydrology, Wallingford, UK. Final Report to Eurostat (SUP-COM95, 95/5-441931EN).
51. Schreiber, P., 1904, “Uber die Beziehungen zwischen dem Niederschlag und der Wasserfuhrung der Flusse in Mitteleuropa” Meteorolog. Z. 21:441 – 452.
52. Sharif, H., N. L. Miller, “ Hydroclimatological predictions based on basin’’s Humidity Index”, Extended Abstract, Joint with 18th Conference on Climate Variability and Change and 20th Conference on Hydrology, January 2006.
53. Steenhuis, T. S., W. H. Van Der Molen, 1986, “The Thornwaite-Mather procedure as a simple engineering method to predict recharge”, Journal of Hydrology, 84 (3-4): 221-229.
54. Thornthwaite, C. W., 1948, “An Approach toward a Rational Classification of Climate” Geographical Review, Vol. 38, No. 1: 55-94.
55. Vittori, J., L. Saito, F. Biondi, 2011, “Developing a water balance model approach with tree-ring records to reconstruct past streamflow in the upper Walker River basin”. 2011 NWRA Annual Conference, Reno, Nevada.
56. Xiong, L.H., S.L. Guo, 2011, “Appraisal of Budyko formula in calculating long-term water balance in humid watersheds of southern China”, Hydrological Processes.
57. Xu, C. Y., V. P. SINGH, 1998, “A Review on Monthly Water Balance Models for Water Resources Investigations”, Water Resources Management, Vol. 12:20-50.
58. Xu, C. Y.,V. P. SINGH,2004, “Review on Regional Water Resources Assessment Models under Stationary and Changing Climate”, Water Resources Management, Vol. 18:591–612.
59. Yang, H. B., D. W. Yang, Z.D. Lei, F.B. Sun, 2008, “New analytical derivation of the mean annual water-energy balance equation”, Water Resources Research, VOL. 44.
60. Yu, P. S., C. C. Kuo, T. C. Yang ,Y. C. Li ,2005, “Simulations of reservoir inflows at long-term time scales by HBV models”, Proceedings of the 16th IASTED International Conference on Modelling and Simulation :158-163, Cancun, Mexico, 18-20 May 2005. 92農科-2.1.2-林-F1
61. Zhang, L., K. Hickel, W. R. Dawes, F. H. S. Chiew, A. W. Western, P. R.,Briggs,2004, “A rational function approach for estimating mean annual evapotranspiration”, Water Resources Research, VOL. 40.
指導教授 李明旭(Ming-hsu Li) 審核日期 2012-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明