參考文獻 |
[1] Bab-Hadiashar, A. and D. Suter, "Robust total least squares based optical flow computation," in Proc. Asian Conf. on Computer Vision, Hong Kong, China, Jan.8-10, 1998, pp.566-573.
[2] Beaudet, P. R., "Rotationally invariant image operators," in Proc. 4th Int. Conf. on Pattern Recognition, Kyoto, Japan, Nov.7-10, 1978, pp.579-583.
[3] Bertozzi, M. and A. Broggi, "GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection," IEEE Trans. on Image Processing, vol.7, no.1, pp.62-81, 1998.
[4] Bertozzi, M., A. Broggi, P. Medici, P. P. Porta, and A. Sjogren, "Stereo vision-based start-inhibit for heavy goods vehicles," in Proc. IEEE Intelligent Vehicles Symp. , Tokyo, Japan, Jun.13-15, 2006, pp.350-355.
[5] Bouguet, J. Y., Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of The Algorithm, Technique Report, Intel Corporation Microprocessor Research Labs., 2003.
[6] Deriche, R. and G. Giraudon, "Accurate corner detection: an analytical study," in Proc. 3rd Int. Conf. on Computer Vision, Osaka, Japan, Dec.4-7, 1990, pp.66-70.
[7] Enkelmann, W., "Obstacle detection by evaluation of optical flow fields from image sequences," Image and Vision Computing, vol.9, no.3, pp.160-168, 1991.
[8] Gandhi, T. and M. M. Trivedi, "Parametric ego-motion estimation for vehicle surround analysis using an omnidirectional camera," Machine Vision and Applications, vol.16, no.2, pp.85-95, 2005.
[9] Gandhi, T. and M. M. Trivedi, "Vehicle surround capture: survey of techniques and a novel omni-video-based approach for dynamic panoramic surround maps," IEEE Trans. on Intelligent Transportation Systems, vol.7, no.3, pp.293-308, 2006.
[10] Harris, C. and M. Stephens, "A combined corner and edge detector," in Proc. 4th Alvey Vision Conf. , Manchester, UK, Aug.30-Sep.2, 1988, pp.147-152.
[11] Hoiem, D., A. A. Efros, and M. Hebert, "Putting objects in perspective," Int. Journal of Computer Vision, vol.80, no.1, pp.3-15, 2008.
[12] Horn, B. K. P. and B. G. Schunck, "Determining optical flow," Artificial Intelligence, vol.17, pp.185-203, 1981.
[13] Inoue, O., A. Seonju, and S. Ozawa, "Following vehicle detection using multiple cameras," in Proc. Int. Conf. on Vehicular Electronics and Safety, Columbus, OH, Sep.22-24, 2008, pp.79-83.
[14] Jin, J.-S., Z. Zhu, and G. Xu, "A stable vision system for moving vehicles," IEEE Trans. on Intelligent Transportation Systems, vol.1, no.1, pp.32-39, 2000.
[15] Jones, W. D., "Keeping cars from crashing," IEEE Spectrum, vol.38, no.9, pp.40-45, 2001.
[16] Kim, S. Y., S. Y. Oh, J. K. Kang, Y. W. Ryu, K. S. Kim, and S.C. Park, "Front and rear vehicle detection and tracking in the day and night times using vision and sonar sensor fusion," in Proc. IEEE/RSJ Int. Conf. on Intelligent Robot and System, Alberta, Canada, Aug.2-6, 2005, pp.2173-2178.
[17] Kitchen, L. and A. Rosenfeld, "Gray level corner detection," Pattern Recognition Letters, vol.1, no.2, pp.95-102, 1982.
[18] Lan, Y.-K., Stop-and-go and Top-view Obstacle Detection based on Dynamic Vision, Master thesis, Institute of Computer Science and Information Engineering, National Central University, Chungli, Taiwan, 2010.
[19] Lowe, G., "Distinctive image features from scale-invariant keypoints," Int. Journal of Computer Vision, vol.60, no.2, pp.91-110, 2004.
[20] Lucas, B. D. and T. Kanade, "An iterative image registration technique with an application to stereo vision," in Proc. Int. Joint Conf. on Artificial Intelligence, Vancouver, Canada, Aug.24-28, 1981, pp.674-679.
[21] Marquardt, D., "An algorithm for least-squares estimation of nonlinear parameters," SIAM Journal on Applied Mathematics, vol.11, pp.431-441, 1963.
[22] Moravec, H., "Towards automatic visual obstacle avoidance," in Proc. Int. Joint Conf. on Artificial Intelligence, Cambridge, MA, Aug.22-25, 1977, pp.584.
[23] Ogale, A. S., C. Fermuller, and Y. Aloimonos, "Motion segmentation using occlusions," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.27, no.6, pp.988-992, 2005.
[24] Oniga, F. and S. Nedevschi, "Processing dense stereo data using elevation maps- road surface, traffic isle, and obstacle detection," IEEE Trans. on Vehicular Technology, vol.59, no.3, pp.1172-1182, 2010.
[25] Rosten, E. and T. Drummond, "Fusing points and lines for high performance tracking," in Proc. 10th IEEE Int. Conf. on Computer Vision, Beijing, China, Oct.17-20, 2005, pp.1508-1515.
[26] Saxena, A., S. H. Chung, and A. Y. Ng, "3-D depth reconstruction from a single still image," Int. Journal of Computer Vision, vol.76, no.1, pp.53-69, 2008.
[27] Shi, J. and C. Tomasi, "Good features to track," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Seattle, WA, Jun.21-23, 1994, pp.593-600.
[28] Sotelo, M. A., J. Barriga, D. Fernández, I. Parra, J. E. Naranjo, M. Marrón, S. Alvarez, and M. Gavilán, "Vision-based blind spot detection using optical flow," Lecture Notes in Computer Science, vol.4739, pp.1113-1118, 2007.
[29] Trajkovic, M. and M. Hedley, "Fast corner detection," Image and Vision Computing, vol.16, no.2, pp.75-87, 1998.
[30] Wang, H. and J. M. Brady, "Real-time corner detection algorithm for motion estimation," Image and Vision Computing, vol.13, no.9, pp.695-703, 1995.
[31] Wang, J., G. Bebis, and R. Miller, "Overtaking vehicle detection using dynamic and quasi-static background modeling," in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, Jun.20-26, 2005, pp.64-71.
[32] Wu, B.-F., C.-J. Chen, H.-H. Chiang, H.-Y. Peng, J.-W. Ma, and T.-T. Lee, "The design of an intelligent real-time autonomous vehicle, Taiwan iTS-1," Journal of the Chinese Institute of Engineerings, vol.30, no.5, pp.829-842, 2007.
|