博碩士論文 995201019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.135.193.105
姓名 顏志成(Jhih-Cheng Yean)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
(850 nm Vertical-Cavity Surface-Emitting Lasers with Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/sec Operations)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們將展示垂直共振腔面射型雷射一種新式的結構,此結構達到超高的調變速度(40 Gbit/sec)也能達到極低的功率消耗特性。在高速操作下,為了降低功率消耗最好的方法是微縮水氧孔徑,然而水氧孔徑也不能一昧的微縮,德國團隊的元件孔徑已經微縮至2μm,但這會造成極高的微分電阻(differential resistance)和單一模態、低光功率(<1 mW),而這些特性會衍伸出電-光頻寬(Electrical-to-optical bandwidth)最大值被侷限住,還有可靠度表現上也不佳。藉由水氧層掀離和鋅擴散這兩項技術運用在850nm波段面射型雷射,我們不只能降低元件本身的水氧層電容(Coxide)達到降低RC延遲效應提高調變速度也能降低微縮水氧孔徑帶來的高微分電阻同時還能抑制高電流下模態的數量,讓元件在高資料傳輸量下也能擁有高傳輸距離,動態特性上在室溫與變溫85°C量測下皆有很好的特性,包括極高的D-factor(13.4 GHz/mA1/2),37 Gbit/sec眼圖操作下有極低的能量比資料量(energy-to-data ratio:EDR=137 fJ/bit),透過OM4 multi-mode fiber,元件能在25 Gbit/sec資料傳輸量下傳達0.8 Km遠,能量比資料傳輸距離(Energy-to-data distance ratio)為175.5 fJ/bit。
摘要(英) We demonstrate a novel structure of vertical-cavity surface-emitting laser (VCSEL) for high-speed (~40 Gbit/sec) with ultra-low power consumption performance. To ultimately downscale the size of oxide (current-confined) aperture of high-speed VCSELs is one of the most effective way to reduce the power consumption during high-speed operation. However, such miniaturized oxide-apertures (~ 2 ?m diameter) in VCSELs would result in a large differential resistance, optical single-mode output, and a small maximum output power (< 1 mW). These characteristics seriously limit their maximum electrical-to-optical (E-O) bandwidth and device reliability. By use of the oxide-relief and Zn-diffusion techniques in our demonstrated 850 nm VCSELs, we can not only release the burden imposed on downscaling the current-confined aperture for high-speed with low-power consumption performance but also can manipulate the number of optical modes inside cavity for maximizing the E-O bandwidth and product of bit-rate transmission distance in OM4 fiber. State-of-the-art dynamic performances at both room-temperature and 85 ℃ operations can be achieved by use of our device. These include extremely-high D-factor (~13.5 GHz/mA1/2), record-low energy-to-data ratios (EDR: 140 fJ/bit) at 37 Gbit/sec operation, and error-free transmission over 0.8 km OM4 multi-mode fiber with record-low energy-to-data distance ratio (EDDR: 175.5 fJ/bit.km) at 25 Gbit/sec operation.
關鍵字(中) ★ 半導體雷射
★ 垂直共振腔半導體雷射
關鍵字(英) ★ Vertical cavity surface emitting lasers
★ Semiconductor lasers
論文目次 摘 要 i
Abstract ii
致謝 iii
目 錄 v
圖目錄 vi
表目錄 ix
第一章 序論
第二章 理 論
第三章 實 驗
第四章 量測結果與討論
第五章 結論與未來研究
Reference
圖目錄
表目錄
參考文獻 [1] “300-Gb/s, 24-Channel Full-Duplex, 850-nm, CMOS-Based Optical Transceivers,” in Proc. OFC 2008 , pp. OMK5, San Diego, CA, Feb., 2008.
[2] NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3] Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb. 2008.
[4] Jin-Wei Shi, C.-C. Chen, Y.-S. Wu, Shi Hao Guol, and Ying-Jay Yang“The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength"IEEE J. Quantum Electron., vol. 45, no. 7, July 2009
[5] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” in Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
[6] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers” IEEE, Photon. Technol. Lett. , vol. 2, 234, 1990.
[7] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, Feb. 2004.
[8] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, Member IEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
[9] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. ,vol 85, no. 22, Nov. 2004.
[10] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001
[11] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, 2007
[12] Chang, Y.-C., Wang, C.S., and Coldren, L.A.: ‘Small-dimension powerefficient high-speed vertical-cavity surface-emitting lasers’, Electron. Lett., 2007, 43, pp. 396–397
[13] Speed 1.1-μm-Range VCSELs With InGaAs/GaAsP-MQWs”, IEEE J. Quantum Electron. , vol. 46, no. 6, June 2010.
[14] Sorcha B. Healy, Eoin P. O’Reilly, Johan S. Gustavsson, Petter Westbergh, Åsa Haglund, Anders Larsson, and Andrew Joel, “Active Region Design for High-Speed 850-nm VCSELs”, IEEE J. Quantum Electron., vol. 46, no. 4, Apr. 2010
[15] P.Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32 Gbit/s multimode fiber transmission using high speed, low current density 850 nm VCSEL,” Electron. Lett., vol. 45, no. 7, pp. 366–368, 2009.
[16] S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett., vol. 45, no. 10, pp. 501–503, 2009.
[17] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber”, Elec. Lett. 13th, vol. 26 No.19,(1990)
[18] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser”, Soc. Photo-opt Instrun. Eng.,vol. 1418, pp.414-421,(1991).
[19] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang,”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser”, Appl. Phys. Lett., 58, pp.1780-1782(1991).
[20] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures.” J. Appl. Phys. ,73, pp3769-3781 (1993).
[21] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion ” J. Appl. Phys.55, p.607(1984).
[22] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion“ Appl.Phys.Lett.38,776,(1981).
[23] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice”Semicond. Sci. Technol., 4, pp.841-846, (1989).
[24] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90年)
[25] R. G. Hunsperger, Integrated Optics:Theory and Technology, Hong Kong, Springer-Verlag, 77, (1992).
[26] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett. 47, p.1193, (1985).
[27] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers” Appl. Phys. Lett., vol. 57, pp.218-220, 1990.
[28] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon”, J. Appl. Phys., vol. 36, p. 3770, (1965).
[29] M. Ochiai et al., Appl. Phys. Lett., 68, 1898(1996)][J. H. Kim , Appl. Phys. Lett. ,69, 3357(1996).
[30] Kent D. Choquette, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys” ,IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, June 1997.
[31] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers” Photon. Tech. Lett. 7, 1237, (1995).
[32] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent #5,262,360 (1993).
[33] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett. 69, 1935-1837 (1996).
[34] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, pp.740-742,(1996).
[35] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,”Appl. Phys. Lett., vol 66, pp.1723-1725, (1995).
[36] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,”Appl. Phys. Lett., vol. 66, pp.3413-3415, 1995.
[37] Hermann A. Haus,”Waves and Fields in Optoelectronics”(1984).
[38] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
[39] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, J. Quantum Electron., 33, 1810-1824,(1997).
[40] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[41] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
[42] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley October 1995.
[43] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[44] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[45] Chao-Kun Lin, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 5, Sep./Oct. 2007.
[46] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett., vol. 98, no. 23, pp. 231106, Jun. 2011.
[47] S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded Low Power Dissipation in Highly Reliable 1060-nm VCSELs for “Green” Optical Interconnection,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1614–1619, Nov./Dec. 2011.
[48] P. Westbergh, J.S. Gustavsson, B. Kogel, A, Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg and A. Joel, “40 Gbit/sec error-free operation of oxide-confined VCSEL,” Electron. Lett., vol. 46, no. 14, July, 2010.
[49] P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85 ℃ error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 100, no. 8, pp. 081103, Feb., 2012.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2012-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明