博碩士論文 995201108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.137.189.32
姓名 夏維凡(Wei-fan Hsia)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於射頻前端系統之高整合度主動式帶通濾波器設計
(Highly integrated active band pass filter designs for RF front end application)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主軸為開發一具高整合性的主動式帶通濾波器之設計方法,目標為整合單刀雙擲帶通濾波器、低雜訊放大器以及平衡至不平衡轉換器等電路方塊並藉由此整合性設計,改善傳統分時多工射頻通訊系統與各級元件串接所產生的不匹配損耗,並達到縮小面積,提高系統整合度的目的。
本論文主要提出兩種設計方法,其一為使用多重耦合線作為設計基礎實現單刀雙擲帶通濾波器,並額外加上主動式負載提供負阻達到損耗補償的效果。由於本論文所使用的負阻架構為共源極加上串聯電阻電容電感回授。不同於傳統的震盪器設計方法,此架構沒有使用共閘極回授,或是額外的源級或汲極至閘極的回授路徑,因此不會造成雜訊指數的上升。
另一則是以濾波器植入損耗法設計出發,以可匹配至複數阻抗之帶通濾波器來設計低雜訊放大器的前端匹配電路,使其具有帶通的響應,後端匹配則使用五線式多重耦合線實現具帶通響應的平衡至不平衡轉換器,在以耦合線結合單刀雙擲切換功能,如此即可將單刀雙擲、帶通濾波器、低雜訊放大器與平衡至不平衡轉換器整合置單一元件內。
針對此研究提出的設計方法,以微波基板及積體製程進行電路時做驗證可行性。透過本研究所提出之高整合度的電路架構及簡潔的設計流程,可整合多種射頻前端功能元件於同一電路中,對於射頻前端電路的微小化、於效能提升與降低設計複雜度均有直接助益。
摘要(英) This study investigates the systematic method in designing highly integrated active band-pass filters. The target is to integrate the SPDT (Single Pole Double Throw) RF switch, LNA (Low noise amplifier), balun and band-pass filter into a single circuit. By this integrated design we can improve the mismatch loss of conventional RF front end system, and schieve the goal of miniaturization and improve the level of integration in system design.
Two design approaches are proposed to achieve the above design goal. The first one is based on the integration of bandpass filter and SPDT RF switch using the multicoupled line structure, and combined the active loaded which can provide the negative resistance to compensate the insertion loss. The proposed active load is based on a common-source structure with an R–L–C series feedback, which is different from the conventional types in the oscillator design methods. It does not use a common-gate series feedback structure or any additional drain- or source-to-gate parallel feedback paths that may degrade the noise performance. Therefore, the noise figure can be improved by the proposed topology.
The second design is based on the insertion loss method for filter design to achieve the complex impedance matching of the LNA input, such that the amplifier can have a band-pass response. As for output matching of LNA we use the multicoupled line structure to achieve the single-to-balanced bandpass filter response. Then, by integrating the SPDT switch function using coupled-lines, we can integrated the SPDT switch, band-pass filter, LNA, and balun in a single circuit.
The proposed design methods are validated using hybrid and integrated microwave circuits. The proposed methods are simple and are capable of integrating multiple functional blocks in a single circuit, which is helpful in minimizing the circuit size, improving the system performance, and also reducing the complexity of design process for RF front-end designs.
關鍵字(中) ★ 主動式帶通濾波器
★ 射頻前端系統
關鍵字(英) ★ RF front end system
★ Active band pass filter
論文目次 目錄
論文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.3章節介紹 6
第二章 具主動式負載之單刀雙擲帶通濾波器 7
2.1電路架構與理論 7
2.2實做與量測驗證 16
2.3 問題討論 27
2.4 結論 34
第三章 具平衡至非平衡轉換功能之帶通低雜訊放大器 37
3.1電路架構與設計理論 37
3.2實做與量測驗證 44
3.3 特性比較 57
第四章 高整合度射頻前端收發模組 60
4.1 電路架構與理論 60
4.2 實做與量測驗證 66
4.3 結論 73
第五章 結論 75
參考文獻 77
參考文獻 [1] S. Lucyszyn and I. D. Robertson, “Monolithic narrowband filter using ultrahigh and tunable active inductors,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2617–2622, Dec. 1994.
[2] T. Soorapanth and S. S. Wong, “A 0-dB IL 2140 30 MHz bandpass filter utilizing -enhanced spiral inductors in standard CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 579–586, May 2002.
[3] K. W. Fan, C. C.Weng, Z.M. Tsai, H.Wang, and S. K. Jeng, “ K–band MMIC active bandpass filters,” IEEE Microw. Wireless Compon, Lett., vol. 15, no. 1, pp. 19–21, Jan. 2005.
[4] B. Georgescu, I. G. Finvers, and F. Ghannouchi, “2 GHz Q-enhanced active filter with low passband distortion and high dynamic range,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2029–2039, Sep. 2006.
[5] J. Kulyk and J. Haslett, “A monolithic CMOS 23 68 30 MHz transformer based -enhanced series-C coupled resonator bandpass filter,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 362–374, Feb. 2006.
[6] Y. H. Chun, J. R. Lee, S, S. W. Yun, and J. K. Rhee, “ Design of an RF low-noise bandpass filter using active capacitance circuit,” IEEE Trans. Microw. Theory Tech.,vol. 53, NO. 2, pp.687 - 695, Feb. 2005.
[7] K. K. Huang, M. J. Chiang, C. K. C. Tzuang, “A 3.3mW K-Band 0.18-mm 1P6M CMOS Active Bandpass Filter Using Complementary Current-Reuse Pair ”,in IEEE Microwave and Wireless Components Letters, Vol. 18, No.2, pp.94 – 96, Feb. 2008.
[8] M. L. Lee, H. S. Wu “ M. L. Lee, and H. S. Wu, “ 1.58-GHz Third-order CMOS active bandpass filter with improved passband flatness”, IEEE Trans. Microwave Theory Tech., vol. 59, no. 9, pp.2275 – 2284, Sep. 2011.
[9] L. Su, and C. K. C. Tzuang, “A narrowband CMOS ring resonator dual-mode active bandpass filter with edge periphery of 2% free-space wavelength” IEEE Trans. Microwave Theory Tech., vol. 60, no. 6, Jun. 2012.
[10] W. H. Tu, “Switchable microstrip bandpass filters with reconfigurable frequency responses,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1488-1491, May 2010.
[11] J. Lee, R. B. Lai, C. C. Chen, C. S. Lin, K. Y. Lin, C. C. Chiong, and H. Wang, “Low insertion-loss single-pole–double-throw reduced-size quarter-wavelength HEMT bandpass filter integrated switches ”,in IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 3028 – 3038, Dec. 2008
[12] Y.-S. Lin, P.-C. Wang, C.-W. You and P.-Y. Chang, “New designs of bandpass diplexer and switchplexer based on parallel-coupled bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 12, pp. 3417-3426, Dec. 2010.
[13] S. F. Chao, C. H. Wu, and Z. M. Tsai, H. Wang and C. H. Chen, “Electronically switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4193-4201, Dec. 2006.
[14] C. S. Cheng, C. C. Wei and R. J. Yang, H. C. Chiu, “A high isolation 0.15-μm depletion-mode pHEMT SPDT switch using field-plate technology”, in Asia-Pacific Microwave Conference Proceedings. pp.759-762, 2007.
[15] C. Y. Ou, C.Y. Hsu, H. R. Lin, H. R. Chuang and T. H. Huang, “A high-isolation high-linearity 24-GHz CMOS T/R switch in the 0.18-μm CMOS process,“ in European Microwave Conference, pp. 250-253, Sep. 2009.
[16] J. Kim, W. Ko ,S.H. Kim, J. Jeong and Y. Kwon, “A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure”, IEEE Microwave and Wireless Components Letters, vol 13 ,pp. 505-507, Dec. 2003.
[17] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku and T. Ishikawa , “60GHz high isolation SPDT MMIC switches using shunt pHEMT resonator , ” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1541-1544, Jun. 2008.
[18] K.-H Pao, C.-Y. Hsu, H.-R. Chuang, C.-L Lu and C.-Y Chen, "A 3-10GHz broadband CMOS T/R switch for UWB applications" in European Microwave Conference, pp. 452-455, Sep. 2006.
[19] S.-F. Chang, J.-L. Chen, H.-W. Kuo and H.-Z. Hsu , “A filter synthesis method applied to millimeter-wave distributed switch design,” in European Microwave Conference, pp. 1295-1298, Oct. 2003.
[20] Z. M. Tsai, Y.S. Jiang, J. Lee, K.Y. Lin and H. Wang “Analysis and design of bandpass single-pole-double-throw FET filter-integrated switches” IEEE Trans. on Microwave Theory and Tech., vol. 55, no. 8, pp. 1601-1610, Aug. 2007.
[21] J. Lee, R.-B. Lai, K.-Y. Lin, C.-C. Chiong and H. Wang, “A Q-band low loss reduced-size filter-integrated SPDT switch using 0.15μm- MHEMT technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 551–554, Jun. 2008.
[22] S. F. Chao, “42 GHz MMIC SPDT bandpass filter-integrated switch using HEMT loaded coupled lines,” Electronics Letters, Vol. 48 No. 9, April. 2012
[23] J. I. Ryu, D. Kim, J. C. Kim, H. Kim, and J. C. Park, “A system-on-package module by fully embedding chip components in organic substrate,” Microwave Integrated Circuits Conference (EuMIC), 2012
[24] J. M. Yook, J. C. Kim, D. S. Kim, and J. Chul, “Embedded passive and active package using silicon substrate,” Electronics Packaging Technology Conference, 2011
[25] Guan, X., Jin, Y. and Nguyen, “Design of high-performance compact CMOS distributed amplifiers with on-chip patterned ground shield inductors, ” Electronics Letters, vol.45, no. 15,pp. 791-792, July 2009.
[26] S. Long, L. Escotte, J. Graffeuill, P. Fellon and D. Roques, “Ka-band coplanar low-noise amplifier design with power PHEMTs,” in European Microwave Conference, pp. 17 - 20, Oct. 2003.
[27] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp.745 - 759 , May 1997.
[28] S. M. Luo, S. H. Weng, Y. L. Ye, C. H. Lin, C. N. Chung and H. Y. Chang, “24-GHz MMIC development using 0.15-μm GaAs PHEMT process for automotive radar applications,” in Asia Pacific Microwave Conference Proceedings, pp. 1-4, Dec. 2008.
[29] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[30] T. P. Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept. Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[31] A. Axholt, W. Ahmad and H. Sjoland, “A 90nm CMOS UWB LNA,” IEEE Norchip, pp. 25-28. Nov. 2008.
[32] P. Pieters , K. Vaesen , W. Diels , G. Carchon , S. Brebels , W. D. Raedt , E. Beyne and R. P. Mertens “High-Q integrated spiral inductors for high performance wireless front-end systems,” in Proc. IEEE Radio Wireless Conf., pp.251-254, Sep. 2000.
[33] J.-L. Chen, S.-F. Chang, C.-C. Liu and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1275–1278, Jun. 2003.
[34] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, pp. 2269-2277,Dec. 2004.
[35] M. Yang, M. Ha, Y. Park and Y. Eo, “A 3–10 GHz CMOS low-noise amplifier using wire bond inductors,” Microwave and Optocal Technology Letters, vol.51, no. 2, pp. 414-416, Feb.2009.
[36] S. M. Rezaul Hasan,. “Analysis and design of a multistage CMOS band-pass low-noise preamplifier for ultrawideband RF receiver,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[37] 吳建鋒, “以多重耦合線實現新式多功能微波元件,” 碩士論文, 國立中央大學, June 2011
[38] R. E. Lehmann and D. D. Heston, “X-Band monolithic series feedback LNA,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1560-1566, Dec. 1985.
[39] R. Sato and E.G. Cristal, “Simplified analysis of coupled transmission-line networls,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 3, pp. 122-131, Mar. 1970.
[40] J. S. Hong, and M. J. Lancaster, “Microstrip Filters for RF/Microwave Application”. New York: Wiley, 2001.
[41] van der Heijden, E., H. Veenstra, D. Hartskeerl, M. Notten and D. v. Goor, “Low noise amplifier with integrated balun for 24GHz car radar,” in Proc.SiRF, pp. 78-81,Jan. 2008.
[42] Huang, G., Kim, S.-K. and Kim, B.-S., “A wideband LNA with active balun for DVB-T application,” IEEE Int. Symp. on Circuits and Systems, pp. 421–424, May 2009.
[43] L. K. Yeung, K.-L. Wu, Y. E. Wang, “Low-temperature cofired ceramic LC filters for RF applications,” IEEE Microw. Mag., vol 9, no. 5, pp.118–128, Oct. 2008.
[44] C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multi-coupled line bandpass filters using low temperature co-fired ceramic technology,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 12, pp. 2902-2912, Dec. 2008.
[45] K.-H. Lee, Z. Jin, and K.-H. Koo, “High linearity SPDT switch for dual band wireless LAN applications,” in Proc. Asia-Pacific Microwave Conf., Dec. 2005.
[46] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 8, pp.1798-1808, Aug. 2004.
[47] Y. A. Atesal, B. Cetinoneri, and G. M. Rebeiz, “ Low-loss 0.13-μm CMOS 50 – 70 GHz SPDT and SP4T switches, ” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.43-46 ,June 2009
[48] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku, and T. Ishikawa , “ 60GHz high isolation SPDT MMIC switches using shunt pHEMT resonator ,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2008, pp. 1541–1544.
[49] Z.-M. Tsai, Y.-S. Jiang, J. Lee, K.-Y. Lin, H. Wang, “Analysis and design of bandpass single-pole–double-throw FET filter-integrated switches,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 8, pp. 1601-1610, Aug. 2008.
[50] J. Lee, Z.-M. Tsai, H. Wang, “A band-pass filter-integrated switch using field-effect transistors and its power analysis,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp.768–771.
[51] 王品傑, “以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統,” 碩士論文, 國立中央大學, June 2010.
[52] S.-C. Lin, T.-N. Kuo, Y.-S. Lin, C.-H. Chen, “Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression,” IEEE Trans. Microwave Theory Tech., vol.54, no.8, pp. 3359-3369, Aug. 2006.
[53] C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and J. Chen, “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4548–4555,Dec. 2006.
指導教授 林祐生(Yo-shen Lin) 審核日期 2012-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明