參考文獻 |
[1] S. Lucyszyn and I. D. Robertson, “Monolithic narrowband filter using ultrahigh and tunable active inductors,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp. 2617–2622, Dec. 1994.
[2] T. Soorapanth and S. S. Wong, “A 0-dB IL 2140 30 MHz bandpass filter utilizing -enhanced spiral inductors in standard CMOS,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 579–586, May 2002.
[3] K. W. Fan, C. C.Weng, Z.M. Tsai, H.Wang, and S. K. Jeng, “ K–band MMIC active bandpass filters,” IEEE Microw. Wireless Compon, Lett., vol. 15, no. 1, pp. 19–21, Jan. 2005.
[4] B. Georgescu, I. G. Finvers, and F. Ghannouchi, “2 GHz Q-enhanced active filter with low passband distortion and high dynamic range,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2029–2039, Sep. 2006.
[5] J. Kulyk and J. Haslett, “A monolithic CMOS 23 68 30 MHz transformer based -enhanced series-C coupled resonator bandpass filter,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 362–374, Feb. 2006.
[6] Y. H. Chun, J. R. Lee, S, S. W. Yun, and J. K. Rhee, “ Design of an RF low-noise bandpass filter using active capacitance circuit,” IEEE Trans. Microw. Theory Tech.,vol. 53, NO. 2, pp.687 - 695, Feb. 2005.
[7] K. K. Huang, M. J. Chiang, C. K. C. Tzuang, “A 3.3mW K-Band 0.18-mm 1P6M CMOS Active Bandpass Filter Using Complementary Current-Reuse Pair ”,in IEEE Microwave and Wireless Components Letters, Vol. 18, No.2, pp.94 – 96, Feb. 2008.
[8] M. L. Lee, H. S. Wu “ M. L. Lee, and H. S. Wu, “ 1.58-GHz Third-order CMOS active bandpass filter with improved passband flatness”, IEEE Trans. Microwave Theory Tech., vol. 59, no. 9, pp.2275 – 2284, Sep. 2011.
[9] L. Su, and C. K. C. Tzuang, “A narrowband CMOS ring resonator dual-mode active bandpass filter with edge periphery of 2% free-space wavelength” IEEE Trans. Microwave Theory Tech., vol. 60, no. 6, Jun. 2012.
[10] W. H. Tu, “Switchable microstrip bandpass filters with reconfigurable frequency responses,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1488-1491, May 2010.
[11] J. Lee, R. B. Lai, C. C. Chen, C. S. Lin, K. Y. Lin, C. C. Chiong, and H. Wang, “Low insertion-loss single-pole–double-throw reduced-size quarter-wavelength HEMT bandpass filter integrated switches ”,in IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 3028 – 3038, Dec. 2008
[12] Y.-S. Lin, P.-C. Wang, C.-W. You and P.-Y. Chang, “New designs of bandpass diplexer and switchplexer based on parallel-coupled bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 12, pp. 3417-3426, Dec. 2010.
[13] S. F. Chao, C. H. Wu, and Z. M. Tsai, H. Wang and C. H. Chen, “Electronically switchable bandpass filters using loaded stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4193-4201, Dec. 2006.
[14] C. S. Cheng, C. C. Wei and R. J. Yang, H. C. Chiu, “A high isolation 0.15-μm depletion-mode pHEMT SPDT switch using field-plate technology”, in Asia-Pacific Microwave Conference Proceedings. pp.759-762, 2007.
[15] C. Y. Ou, C.Y. Hsu, H. R. Lin, H. R. Chuang and T. H. Huang, “A high-isolation high-linearity 24-GHz CMOS T/R switch in the 0.18-μm CMOS process,“ in European Microwave Conference, pp. 250-253, Sep. 2009.
[16] J. Kim, W. Ko ,S.H. Kim, J. Jeong and Y. Kwon, “A high-performance 40-85 GHz MMIC SPDT switch using FET-integrated transmission line structure”, IEEE Microwave and Wireless Components Letters, vol 13 ,pp. 505-507, Dec. 2003.
[17] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku and T. Ishikawa , “60GHz high isolation SPDT MMIC switches using shunt pHEMT resonator , ” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1541-1544, Jun. 2008.
[18] K.-H Pao, C.-Y. Hsu, H.-R. Chuang, C.-L Lu and C.-Y Chen, "A 3-10GHz broadband CMOS T/R switch for UWB applications" in European Microwave Conference, pp. 452-455, Sep. 2006.
[19] S.-F. Chang, J.-L. Chen, H.-W. Kuo and H.-Z. Hsu , “A filter synthesis method applied to millimeter-wave distributed switch design,” in European Microwave Conference, pp. 1295-1298, Oct. 2003.
[20] Z. M. Tsai, Y.S. Jiang, J. Lee, K.Y. Lin and H. Wang “Analysis and design of bandpass single-pole-double-throw FET filter-integrated switches” IEEE Trans. on Microwave Theory and Tech., vol. 55, no. 8, pp. 1601-1610, Aug. 2007.
[21] J. Lee, R.-B. Lai, K.-Y. Lin, C.-C. Chiong and H. Wang, “A Q-band low loss reduced-size filter-integrated SPDT switch using 0.15μm- MHEMT technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 551–554, Jun. 2008.
[22] S. F. Chao, “42 GHz MMIC SPDT bandpass filter-integrated switch using HEMT loaded coupled lines,” Electronics Letters, Vol. 48 No. 9, April. 2012
[23] J. I. Ryu, D. Kim, J. C. Kim, H. Kim, and J. C. Park, “A system-on-package module by fully embedding chip components in organic substrate,” Microwave Integrated Circuits Conference (EuMIC), 2012
[24] J. M. Yook, J. C. Kim, D. S. Kim, and J. Chul, “Embedded passive and active package using silicon substrate,” Electronics Packaging Technology Conference, 2011
[25] Guan, X., Jin, Y. and Nguyen, “Design of high-performance compact CMOS distributed amplifiers with on-chip patterned ground shield inductors, ” Electronics Letters, vol.45, no. 15,pp. 791-792, July 2009.
[26] S. Long, L. Escotte, J. Graffeuill, P. Fellon and D. Roques, “Ka-band coplanar low-noise amplifier design with power PHEMTs,” in European Microwave Conference, pp. 17 - 20, Oct. 2003.
[27] D. Shaeffer and T. Lee, “A 1.5 V, 1.5 GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp.745 - 759 , May 1997.
[28] S. M. Luo, S. H. Weng, Y. L. Ye, C. H. Lin, C. N. Chung and H. Y. Chang, “24-GHz MMIC development using 0.15-μm GaAs PHEMT process for automotive radar applications,” in Asia Pacific Microwave Conference Proceedings, pp. 1-4, Dec. 2008.
[29] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 μm CMOS technology”, IEEE Microwave Wireless Component Letter, vol. 15, no. 7, pp. 448-450, July 2005.
[30] T. P. Wang, “A Low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon., vol. 20, no. 9, pp. 519-521, Sept. Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[31] A. Axholt, W. Ahmad and H. Sjoland, “A 90nm CMOS UWB LNA,” IEEE Norchip, pp. 25-28. Nov. 2008.
[32] P. Pieters , K. Vaesen , W. Diels , G. Carchon , S. Brebels , W. D. Raedt , E. Beyne and R. P. Mertens “High-Q integrated spiral inductors for high performance wireless front-end systems,” in Proc. IEEE Radio Wireless Conf., pp.251-254, Sep. 2000.
[33] J.-L. Chen, S.-F. Chang, C.-C. Liu and H.-W. Kuo, “Design of a 20-to-40 GHz bandpass MMIC amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1275–1278, Jun. 2003.
[34] A. Ismail and A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, pp. 2269-2277,Dec. 2004.
[35] M. Yang, M. Ha, Y. Park and Y. Eo, “A 3–10 GHz CMOS low-noise amplifier using wire bond inductors,” Microwave and Optocal Technology Letters, vol.51, no. 2, pp. 414-416, Feb.2009.
[36] S. M. Rezaul Hasan,. “Analysis and design of a multistage CMOS band-pass low-noise preamplifier for ultrawideband RF receiver,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, pp. 638-651 , Apr. 2010.
[37] 吳建鋒, “以多重耦合線實現新式多功能微波元件,” 碩士論文, 國立中央大學, June 2011
[38] R. E. Lehmann and D. D. Heston, “X-Band monolithic series feedback LNA,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1560-1566, Dec. 1985.
[39] R. Sato and E.G. Cristal, “Simplified analysis of coupled transmission-line networls,” IEEE Trans. Microw. Theory Tech., vol. 18, no. 3, pp. 122-131, Mar. 1970.
[40] J. S. Hong, and M. J. Lancaster, “Microstrip Filters for RF/Microwave Application”. New York: Wiley, 2001.
[41] van der Heijden, E., H. Veenstra, D. Hartskeerl, M. Notten and D. v. Goor, “Low noise amplifier with integrated balun for 24GHz car radar,” in Proc.SiRF, pp. 78-81,Jan. 2008.
[42] Huang, G., Kim, S.-K. and Kim, B.-S., “A wideband LNA with active balun for DVB-T application,” IEEE Int. Symp. on Circuits and Systems, pp. 421–424, May 2009.
[43] L. K. Yeung, K.-L. Wu, Y. E. Wang, “Low-temperature cofired ceramic LC filters for RF applications,” IEEE Microw. Mag., vol 9, no. 5, pp.118–128, Oct. 2008.
[44] C.-L. Tsai and Y.-S. Lin, “Analysis and design of new single-to-balanced multi-coupled line bandpass filters using low temperature co-fired ceramic technology,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 12, pp. 2902-2912, Dec. 2008.
[45] K.-H. Lee, Z. Jin, and K.-H. Koo, “High linearity SPDT switch for dual band wireless LAN applications,” in Proc. Asia-Pacific Microwave Conf., Dec. 2005.
[46] K.-Y. Lin, W.-H. Tu, P.-Y. Chen, H.-Y. Chang, H. Wang, R.-B. Wu, “Millimeter-wave MMIC passive HEMT switches using traveling-wave concept,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 8, pp.1798-1808, Aug. 2004.
[47] Y. A. Atesal, B. Cetinoneri, and G. M. Rebeiz, “ Low-loss 0.13-μm CMOS 50 – 70 GHz SPDT and SP4T switches, ” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.43-46 ,June 2009
[48] Y. Tsukahara, H. Amasuga, S. Goto, T. Oku, and T. Ishikawa , “ 60GHz high isolation SPDT MMIC switches using shunt pHEMT resonator ,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2008, pp. 1541–1544.
[49] Z.-M. Tsai, Y.-S. Jiang, J. Lee, K.-Y. Lin, H. Wang, “Analysis and design of bandpass single-pole–double-throw FET filter-integrated switches,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 8, pp. 1601-1610, Aug. 2008.
[50] J. Lee, Z.-M. Tsai, H. Wang, “A band-pass filter-integrated switch using field-effect transistors and its power analysis,” IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2006, pp.768–771.
[51] 王品傑, “以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統,” 碩士論文, 國立中央大學, June 2010.
[52] S.-C. Lin, T.-N. Kuo, Y.-S. Lin, C.-H. Chen, “Novel coplanar-waveguide bandpass filters using loaded air-bridge enhanced capacitors and broadside-coupled transition structures for wideband spurious suppression,” IEEE Trans. Microwave Theory Tech., vol.54, no.8, pp. 3359-3369, Aug. 2006.
[53] C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and J. Chen, “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4548–4555,Dec. 2006.
|