博碩士論文 995201036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.135.193.105
姓名 陳睿琪(Jui-chi Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 有關多級直流直流升壓型轉換器
(On the Design of Multilevel DC-DC Boost Converter)
相關論文
★ 用於類比/混和訊號積體電路可靠度增強的加壓測試★ 應用於電容陣列區塊之維持比值良率的通道繞線法
★ 高速無進位除法器設計★ 以正交分頻多工系統之同步的高效能內插法技術
★ 增強CMOS鎖相迴路可靠度★ 適用於地面式數位電視廣播系統之平行架 構記憶體式快速傅立葉轉換處理器設計
★ 對於長解碼長度可降低其記憶體使用的低密度同位檢查碼解碼器設計★ 單級降壓式功因修正轉換器之探索
★ 設計具誤差消除機制之串疊式三角積分調變器★ 交換電容式類比電路良率提升之設計方法
★ 使用分級時序記憶實作視角無關手勢辨識問題★ 部分平行低密度同為元檢查碼解碼器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 低記憶體需求及效能改善的低密度同位元檢查碼解碼器架構
★ 混合式加法器設計★ 非線性鋰電池之充放電模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來隨著油價的高漲以及環保意識抬頭,人們愈來愈重視能源的問題,世界各國也積極推動再生能源與綠色能源的開發及研究,而其中太陽能電池亦扮演了很重要的角色。然而當日照不足時,太陽能發電系統仍舊需要高電壓供後級使用,因此需要一高升壓比電源轉換器。本文的重點,即在實現一個高升壓比高效能的直流直流轉換器。
此升壓型轉換器相較於其他所提及的多級升壓型轉換器,具有較低的功率損耗、較小的輸出漣波、較低的等效串聯阻抗(Equivalent Series Resistance, ESR)、雙向的電流、模組化的架構、較低的元件個數需求、僅需較小的輸出電容、輸出電容有較小的電流漣波等特性,適合在太陽能發電系統中提供一個穩定的升壓轉換。電路操作原理主要是利用切換式開關使電容逐級充放電,在輸出端達到升壓的功能。然而分析量測結果,可以證明此四級架構的升壓型轉換器不適合用TSMC 0.25um HV 60V製程來實現。
若是在1.9mm×1.9mm晶片面積下,採用單級電路架構來實現,可以使轉換效能達到90%以上,當需要2N倍轉換時,將N個晶片做適當地連接即可。
摘要(英) In resent years, with spiraling fuel costs and enhancement of environmental consciousness, people put more emphasis on energy crisis problem. Many countries are encouraging and promoting the development of renewable energy and green energy. Solar cell plays an important role in green energy. However, solar PV system requires high voltage for back-end application even when sunlight is insufficient. So we need a high step-up ratio DC-DC boost converter. Therefore, emphasis of this thesis is placed on developing a high efficiency and high step-up ratio DC-DC boost converter.
Compared with some other conventional multilevel DC-DC boost converter, the multilevel DC-DC boost converter we discuss in this thesis features lower power loss, lower output voltage ripples, lower equivalent series resistance (ESR), bidirectional current, modular structure, small switching device count, lower capacitance and ripple current requirement for the two output capacitors and etc.. This boost converter is good to supply power to solar PV system since its output voltage is stable. The operating principle is based on pumping up the capacitor voltage one by one to make the output voltage. But it was verified that TSMC 0.25um 60V HV process is not suitable for this four stages topology by analyzing measurement results.
Efficiency can exceed 90% if we only introduce single modular stage to a 1.9×1.9mm chip which is fabricated with TSMC 0.25um 60V HV process. Hence, when 2N voltage ratio is demanded, just connecting N chips in a proper way.
關鍵字(中) ★ 直流直流升壓型轉換器
★ 多級轉換器
★ 切換式電容轉換器
關鍵字(英) ★ DC-DC boost converter
★ multilevel converter
★ switched capacitor converter
論文目次 摘要 III
Abstract IV
誌謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景簡介 1
1.2 研究動機 2
1.3 論文架構 3
第二章 直流直流轉換器概論 4
2.1 轉換器的種類 4
2.2 切換式轉換器分類 5
2.2.1 升壓型轉換器 (Boost Converter or Step-Up Converter) 5
2.2.2 其他類型轉換器 12
2.3切換式電容轉換器(Switched Capacitor Converter) 14
2.4飛馳式電容直流直流轉換器(Flying Capacitor DC-DC Converter) 16
2.5模組化多級電容箝制直流直流轉換器(Modular Multilevel Capacitor Clamped DC-DC Converter, MMCCC) 19
2.6 切換式轉換器規格定義與說明 21
2.6.1 輸入電壓 (Input Voltage) 22
2.6.2 輸出電壓漣波 (Output Voltage Ripple) 22
2.6.3 轉換效能 (Efficiency) 23
2.6.4 電磁干擾 (Electromagnetic Interference, EMI) 25
第三章 多級切換式電容直流直流升壓型轉換器(Multilevel Switching-Capacitor DC-DC Boost Converter) 26
3.1 電路設計與架構 26
3.2 電路操作原理 27
3.3 電路模擬 30
3.3.1 開關閘極訊號波形 30
3.3.2 升壓型轉換器電容電壓 31
3.3.3 升壓型轉換器輸入電壓與輸入電流和輸出電壓與輸出電流波形 35
3.4 佈局考量 38
3.5 量測考量 41
3.6 量測結果 48
第四章 單級模組化電路設計、模擬與討論 53
4.1理想狀態之電路模擬 53
4.1.1 開關閘極訊號波形 53
4.1.2 升壓器電容電壓 54
4.1.3 升壓器輸入電壓與輸入電流和輸出電壓與輸出電流模擬結果 56
4.2 單級模組化電路架構模擬結果 58
4.3單級切換式電容直流轉直流升壓器模組化電路模擬結果 61
4.4單級模組化電路組合成四級切換式電容直流轉直流升壓器模擬結果 65
4.4.1 模擬結果 65
4.4.2 開關中PMOS尺寸之討論 67
第五章 結論 72
5.1 結論 72
5.2 未來改進方向 73
參考文獻 74
參考文獻 [1] Solar Energy Industries Association on Jun.12, 2012, “US Solar Market Insight ReportQ1” , available at http://www.slideshare.net/SEIA/us-solar-market-insight-report-q1-2012
[2] Y.-H. Chan, “High step-up DC-DC converter with cockcroft-walton voltage multiplier for solar power system applications,” MS Thesis, Department of Electrical Engineering, National Taiwan University of Science and Technology, 2011.
[3] L.-T. Hsu, “Modeling and control of a multi-phase step-up DC/DC converter with low switch voltage stress,” MS Thesis, Department of Electrical Engineering, National Tsing Hua University, 2008.
[4] H.-H. Ko, “A high efficiency synchronous CMOS switching buck regulator with accurate current sensing technique,” MS Thesis, Department of Electrical Engineering, National Central University, 2007.
[5] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics, 2nd edition, John Wiley, New York, 1950.
[6] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Circuits and Systems I:Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[7] M.-S. Wu, “Design and analysis of a boost mode switched-capacitor DC/DC converter,” MS Thesis, Graduate Institute of Electronics Engineering, National Taiwan University, 2005.
[8] R. Jain, “A novel switched capacitor circuit for efficient voltage regulation,” in Devices, Circuits and Systems, 2008. pp. 1-6, ICCDCS 2008. 7th International Caribbean Conference, 2008.
[9] K. K. Law, K. W. E. Cheng, and Y. P. B. Yeung, “Design and analysis of switched-capacitor-based step-up resonant converters,” IEEE Trans. Circuits and Systems I:Regular Paper, vol. 52, no. 5, pp. 943-948, May. 2005.
[10] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, “A new design method for high-power high-efficiency switched-capacitor DC–DC converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
[11] K. Jin, M. Yang, X. Ruan, and M. Xu, “Three-level bidirectional converter for fuel-cell/battery hybrid power system,” IEEE Trans. Industrial Electron., vol. 57, no. 6, pp. 1976-1986, Jun. 2010.
[12] M. Shen, F. Z. Peng, and L. M. Tolbert, “Multilevel DC–DC power conversion system with multiple DC sources,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 420-426, Jan. 2008.
[13] W. Qian, F. Z. Peng, M. Shen, and L. M. Tolbert, “3X DC-DC multiplier/divider for HEV systems,” Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, pp. 1109-1114, 15-19 Feb. 2009.
[14] F. H. Khan and L. M. Tolbert, “A multilevel modular capacitor-clamped DC-DC converter,” IEEE Trans. Industry Applications, vol. 43, no. 6, pp. 1628-1638, Nov./Dec. 2007.
[15] F. H. Khan, L. M. Tolbert, and W. E. Webb, “Start-up and dynamic modeling of the multilevel modular capacitor-clamped converter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 519-531, Feb. 2010.
[16] F. H. Khan and L. M. Tolbert, “Multiple-load-source integration in a multilevel modular capacitor-clamped DC–DC converter featuring fault tolerant capability,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 14-24, Jan. 2009.
[17] D. Cao and F. Z. Peng, “Zero-current-switching multilevel modular switched-capacitor DC–DC converter,” IEEE Trans. Industry Applications, vol. 46, no. 6, pp. 2536-2544, Nov./Dec. 2010.
[18] W. Qian, J. G. Cintron-Rivera, F. Z. Peng, and D. Cao, “A multilevel DC-DC converter with high voltage gain and reduced component rating and count,” Applied Power Electronics Conference and Exposition, 2011. APEC 2011. Twenty-Sixth Annual IEEE, pp. 1146-1152, 6-11 Mar. 2011.
[19] H. W. Whittington, B. W. Flynn, and D.E. Macpherson, Switched Mode Power Supplies: Design and Construction, 2nd edition, Kluwer Academic Publishers, 2001.
[20] S.-Y. Wang, “Improved light-load efficiency for switched mode buck converter using PWM operated power-save mode,” MS Thesis, Department of Electrical Engineering, National Tsing-Hua University, 2004.
[21] C.-I. Chiu, “On the implementation of an ultra-wide-load high-efficiency DC-DC buck converter,” MS Thesis, Department of Electrical Engineering, National Central University, 2011.
[22] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Inc., 2001.
v
[1] Solar Energy Industries Association on Jun.12, 2012, “US Solar Market Insight ReportQ1” , available at http://www.slideshare.net/SEIA/us-solar-market-insight-report-q1-2012
[2] Y.-H. Chan, “High step-up DC-DC converter with cockcroft-walton voltage multiplier for solar power system applications,” MS Thesis, Department of Electrical Engineering, National Taiwan University of Science and Technology, 2011.
[3] L.-T. Hsu, “Modeling and control of a multi-phase step-up DC/DC converter with low switch voltage stress,” MS Thesis, Department of Electrical Engineering, National Tsing Hua University, 2008.
[4] H.-H. Ko, “A high efficiency synchronous CMOS switching buck regulator with accurate current sensing technique,” MS Thesis, Department of Electrical Engineering, National Central University, 2007.
[5] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics, 2nd edition, John Wiley, New York, 1950.
[6] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Circuits and Systems I:Fundamental Theory and Applications, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
[7] M.-S. Wu, “Design and analysis of a boost mode switched-capacitor DC/DC converter,” MS Thesis, Graduate Institute of Electronics Engineering, National Taiwan University, 2005.
[8] R. Jain, “A novel switched capacitor circuit for efficient voltage regulation,” in Devices, Circuits and Systems, 2008. pp. 1-6, ICCDCS 2008. 7th International Caribbean Conference, 2008.
[9] K. K. Law, K. W. E. Cheng, and Y. P. B. Yeung, “Design and analysis of switched-capacitor-based step-up resonant converters,” IEEE Trans. Circuits and Systems I:Regular Paper, vol. 52, no. 5, pp. 943-948, May. 2005.
[10] F. Zhang, L. Du, F. Z. Peng, and Z. Qian, “A new design method for high-power high-efficiency switched-capacitor DC–DC converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
[11] K. Jin, M. Yang, X. Ruan, and M. Xu, “Three-level bidirectional converter for fuel-cell/battery hybrid power system,” IEEE Trans. Industrial Electron., vol. 57, no. 6, pp. 1976-1986, Jun. 2010.
[12] M. Shen, F. Z. Peng, and L. M. Tolbert, “Multilevel DC–DC power conversion system with multiple DC sources,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 420-426, Jan. 2008.
[13] W. Qian, F. Z. Peng, M. Shen, and L. M. Tolbert, “3X DC-DC multiplier/divider for HEV systems,” Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE, pp. 1109-1114, 15-19 Feb. 2009.
[14] F. H. Khan and L. M. Tolbert, “A multilevel modular capacitor-clamped DC-DC converter,” IEEE Trans. Industry Applications, vol. 43, no. 6, pp. 1628-1638, Nov./Dec. 2007.
[15] F. H. Khan, L. M. Tolbert, and W. E. Webb, “Start-up and dynamic modeling of the multilevel modular capacitor-clamped converter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 519-531, Feb. 2010.
[16] F. H. Khan and L. M. Tolbert, “Multiple-load-source integration in a multilevel modular capacitor-clamped DC–DC converter featuring fault tolerant capability,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 14-24, Jan. 2009.
[17] D. Cao and F. Z. Peng, “Zero-current-switching multilevel modular switched-capacitor DC–DC converter,” IEEE Trans. Industry Applications, vol. 46, no. 6, pp. 2536-2544, Nov./Dec. 2010.
[18] W. Qian, J. G. Cintron-Rivera, F. Z. Peng, and D. Cao, “A multilevel DC-DC converter with high voltage gain and reduced component rating and count,” Applied Power Electronics Conference and Exposition, 2011. APEC 2011. Twenty-Sixth Annual IEEE, pp. 1146-1152, 6-11 Mar. 2011.
[19] H. W. Whittington, B. W. Flynn, and D.E. Macpherson, Switched Mode Power Supplies: Design and Construction, 2nd edition, Kluwer Academic Publishers, 2001.
[20] S.-Y. Wang, “Improved light-load efficiency for switched mode buck converter using PWM operated power-save mode,” MS Thesis, Department of Electrical Engineering, National Tsing-Hua University, 2004.
[21] C.-I. Chiu, “On the implementation of an ultra-wide-load high-efficiency DC-DC buck converter,” MS Thesis, Department of Electrical Engineering, National Central University, 2011.
[22] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill Inc., 2001.
指導教授 魏慶隆(Chin-long Wey) 審核日期 2012-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明