參考文獻 |
[1.1] K. Brennan and K. Hess, “High field transport in GaAs, InP and InAs,” Solid-State Electronics, vol. 27, pp. 347-357, 1984.
[1.2] Z. Dobrovolskis, K. Grigoras, and A. Krotkus, “Measurement of the hot-electron conductivity in semiconductors using ultrafast electric pulses,” Applied Physics A Solids and Surfaces, vol. 48, pp. 245-249, 1989.
[1.3] K. J. Goldammer, S. J. Chung, W. K. Liu, M. B. Santos, J. L. Hicks, S. Raymond, and S. Q. Murphy, “High-mobility electron systems in remotely-doped InSb quantum wells,” Journal of Crystal Growth, vol. 201-202, pp. 753-756, 1999.
[1.4] W. Hansen, T. P. Smith, J. Piao, R. Beresford, and W. I. Wang, “Magnetoresistance measurements of doping symmetry and strain effects in GaSb-AlSb quantum wells,” Applied Physics Letters, vol. 56, pp. 81-83, 1990.
[1.5] A. S. Filipchenko and L. P. Bolshakov, “Mobility of holes in p-InSb crystals,” physica status solidi (b), vol. 77, pp. 53-58, 1976.
[1.6] C. R. K. Bolognesi, H. ; English, J. H. , “Well width dependence of electron transport in molecular-beam epitaxially grown InAs/AlSb quantum wells,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 10, pp. 877-879, 1992.
[1.7] C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, “Growth of InAs-AlSb quantum wells having both high mobilities and high concentrations,” Journal of Electronic Materials, vol. 22, pp. 255-258, 1993.
[1.8] R. Tsai, M. Barsky, J. B. Boos, B. R. Bennett, J. Lee, N. A. Papanicolaou, R. Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher, and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics,” IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 294-297, 2003.
[1.9] J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, Y. C. Chou, M. D. Lange, J. M. Yang, R. Bass, D. Park, and B. V. Shanabrook, “Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications,” IEICE Transactions on Electronics, vol. E91-C, pp. 1050-1057, 2008.
[1.10] W. R. Deal, R. Tsai, M. D. Lange, J. B. Boos, B. R. Bennett, and A. Gutierrez, “A W-band InAs/AlSb low-noise/low-power amplifier,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 208-210, 2005.
[1.11] B. Y. Ma, J. Bergman, P. S. Chen, J. B. Hacker, G. Sullivan, and B. Brar, “Ultra-Wideband Ultra-Low-DC-Power High Gain Differential-Input Low Noise Amplifier MMIC Using InAs/AlSb HEMT,” IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 1-4, 2007.
[1.12] P. P. Ruden, M. Shur, D. K. Arch, R. R. Daniels, D. E. Grider, and T. E. Nohava, “Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors,” IEEE Transactions on Electron Devices, vol. 36, pp. 2371-2379, 1989.
[1.13] T. J. Drummond, T. E. Zipperian, I. J. Fritz, J. E. Schirber, and T. A. Plut, “p-channel, strained quantum well field-effect transistor,” Applied Physics Letters, vol. 49, pp. 461-463, 1986.
[1.14] M. Jaffe, J. E. Oh, J. Pamulapati, J. Singh, and P. Bhattacharya, “In-plane hole effective masses in InxGa1−xAs/Al0.15Ga0.85As modulation-doped heterostructures,” Applied Physics Letters, vol. 54, pp. 2345-2347, 1989.
[1.15] L. F. Luo, K. F. Longenbach and W. I. Wang, “p-channel modulation-doped field-effect transistors based on AlSb0.9As0.1/GaSb,” IEEE Electron Device Lett., vol. 11, no. 12, pp. 567-569, 1990
[1.16] B. R. Bennett, M. G. Ancona, J. B. Boos, and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Applied Physics Letters, vol. 91, pp. 042104-042106, 2007.
[1.17] B. R. Bennett, M. G. Ancona, J. B. Boos, C. B. Canedy, and S. A. Khan, “Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors,” Journal of Crystal Growth, vol. 311, pp. 47-53, 2008.
[1.18] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, “High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5V) logic applications,” in IEDM Tech. Dig., pp. 1–4, 2008.
[2.1] David J. Y. Feng, “N-type Modulation-Doped InGaAlAs/InP Strain-Balanced Multiple Quantum Wells for Photonic Integrated Circuits,” Ph.D. dissertation, National Sun Yat-sen University, 2008.
[2.2] Y. C. Chou, J. M. Yang, M. D. Lange, S. S. Tsui, D. L. Leung, C. H. Lin, M. Wojtowicz, and A. K. Oki, “Degradation mechanisms of 0.1 μm AlSb/InAs HEMTS for ultralow-power applications,” IEEE International Reliability Physics Symposium, pp. 436-440, 2008.
[2.3] S. Miya, S. Muramatsu, N. Kuze, K. Nagase, T. Iwabuchi, A. Ichii, M. Ozaki, and I. Shibasaki, “AIGaAsSb Buffer/Barrier on GaAs substrate for InAs channel devices with high electron mobility and practical reliability,” Journal of Electronic Materials, vol. 25, pp. 415-420, 1996.
[2.4] G. Tuttle, H. Kroemer, and J. H. English, “Effects of interface layer sequencing on the transport properties of InAs/AlSb quantum wells: Evidence for antisite donors at the InAs/AlSb interface,” Journal of Applied Physics, vol. 67, pp. 3032-3034, 1990.
[2.5] B. R. Bennett, S. A. Khan, J. B. Boos, N. A. Papanicolaou, and V. V. Kuznetsov, “AlGaSb Buffer Layers for Sb-Based Transistors,” Journal of Electronic Materials, vol. 39, pp. 2196-2202, 2010.
[2.6] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electronics, vol. 49, pp. 1875-1895, 2005.
[2.7] B. R. Bennett, M. G. Ancona, J. B. Boos, and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Applied Physics Letters, vol. 91, pp. 042104-042106, 2007.
[2.8] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, “High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5V) logic applications,” in IEDM Tech. Dig., pp. 1–4, 2008.
[2.9] J. D. Wiley, “Chapter 2 mobility of holes in III–V compounds,” Semicond. Semimetals, vol. 10, pp. 91–174, 1974
[2.10] G. Tuttle, H. Kroemer, and J. H. English, “Electron concentrations and mobilities in AlSb/InAs/AlSb quantum wells,” Journal of Applied Physics, vol. 65, pp. 5239-5241, 1989.
[2.11] C. R. Bolognesi, H. Kroemer, and J. H. English, “Interface roughness scattering in InAs/AlSb quantum wells,” Applied Physics Letters, vol. 61, pp. 213-215, 1992.
[2.12] P. R. Berger, K. Chang, P. Bhattacharya, J. Singh, and K. K. Bajaj, “Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime,” Applied Physics Letters, vol. 53, pp. 684-686, 1988.
[2.13] M. J. Ekenstedt, S. M. Wang, and T. G. Andersson, “Temperature-dependent critical layer thickness for In0.36Ga0.64As/GaAs single quantum wells,” Applied Physics Letters, vol. 58, pp. 854-856, 1991.
[2.14] C. M. Engelhardt, D. Többen, M. Aschauer, F. Schäffler, G. Abstreiter, and E. Gornik, “High mobility 2-D hole gases in strained Ge channels on Si substrates studied by magnetotransport and cyclotron resonance,” Solid-State Electronics, vol. 37, pp. 949-952, 1994.
[2.15] S. Madhavi, V. Venkataraman, and Y. H. Xie, “High room-temperature hole mobility in Ge0.7Si0.3/Ge/Ge0.7Si0.3 modulation-doped heterostructures,” Journal of Applied Physics, vol. 89, pp. 2497-2499, 2001.
[2.16] J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, Y. C. Chou, M. D. Lange, J. M. Yang, R. Bass, D. Park, and B. V. Shanabrook, “Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications,” IEICE Transactions on Electronics, vol. E91-C, pp. 1050-1057, 2008.
[2.17] R. Tsai, M. Barsky, J. B. Boos, B. R. Bennett, J. Lee, N. A. Papanicolaou, R. Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher, and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics,“ IEEE Proc. GaAs IC Symp., pp.294-297, 2003.
[2.18] J. Bergman, G. Nagy, G. Sullivan, B. Brar, C. Kadow, H.-K. Lin, A. C. Gossard, and M. Rodwell, “InAs/AlSb HFETs with fτ and fmax above 150 GHz for low-power MMICs,” IEEE Proc. 15th Int. Conf. on InP and Related Mater., pp. 219-222, 2003.
[2.19] Y. Royter, K. R. Elliott, P. W. Deelman, R. D. Rajavel, D. H. Chow, I. Milosavljevic, C. H. Fields, “High frequency InAs-channel HEMTs for low power ICs,” Int. Electron Dev. Meet., pp. 30.7.1-30.7.4, 2003.
[2.20] P.-Y. Chen, “Gate shrinking and device charactrtization for antimonide based HEMTs development,” Master thesis, National Central University, 2011.
[3.1] P.-Y. Chen, “Gate shrinking and device charactrtization for antimonide based HEMTs development,” Master thesis, National Central University, 2011.
[3.2] C. R. Bolognesi, M. W. Dvorak, and D. H. Chow, “Impact ionization suppression by quantum confinement: Effects on the DC and microwave performance of narrow-gap channel InAs/AlSb HFET’s,” IEEE Transactions on Electron Devices, vol. 46, pp. 826-832, 1999.
[3.3] H. K. Lin, C. Kadow, J. U. Bae, M. J. W. Rodwell, A. C. Gossard, B. Brar, G. Sullivan, G. Nagy, and J. Bergman, “Design and characteristics of strained InAs/InAlAs composite-channel heterostructure field-effect transistors,” Journal of Applied Physics, vol. 97, pp. 024505-024508, 2005.
[3.4] H. K. Lin, C. Kadow, M. Dahlström, J. U. Bae, M. J. W. Rodwell, A. C. Gossard, B. Brar, G. Sullivan, G. Nagy, and J. Bergman, “InAs/InAsP composite channels for antimonide-based field-effect transistors,” Applied Physics Letters, vol. 84, pp. 437-439, 2004.
[3.5] J. B. Boos, M. J. Yang, B. R. Bennett, D. Park, W. Kruppa, and R. Bass, “Low-voltage, high-speed AlSb/InAsSb HEMTs,” Electronics Letters, vol. 35, pp. 847-848, 1999.
[3.6] H.-K. Lin, Y.-C. Lin, F.-H. Huang, T.-W. Fan, P.-C. Chiu, J.-I. Chyi C.-H. Ko, T.-M. Kuan, M.-K. Hsieh, W.-C. Lee, and C. H. Wann, “Gate Leakage Lowering and Kink Current Suppression for Antimonide-Based Field-Effect Transistors,” Solid-State Electronics, vol. 54, pp. 475-478, 2010.
[3.7] B. Brar and H. Kroemer, “Influence of Impact Ionization on the Drain Conductance in InAs-AlSb Quantum-Well Heterostructure Field-Effect Transistors,” IEEE Electron Device Letters, vol. 16, pp. 548-550, 1995.
[3.8] M. H. Somerville, A. Ernst, and J. A. del Alamo, “A physical model for the kink effect in InAlAs/InGaAs HEMTs,” IEEE Transactions on Electron Devices, vol. 47, pp. 922-930, 2000.
[3.9] G. Meneghesso, G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U. K. Mishra, C. Canali, and E. Zanoni, “Surface-Related Drain Current Dispersion Effects in AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 51, pp. 1554-1561, 2004.
[3.10] N. Igau, V. Ciupina, G. Prodan, “Structural, optical and electrical properties of Sb2O3 thin films with different thickness,” Journal of Optoelectronics and Advanced Materials. vol. 8, pp. 37-42, 2006.
[3.11] Klein, “Electronic properties of In2O3 surfaces,” Applied Physics Letters, vol. 77, pp. 2009-2011, 2000.
[3.12] M. Malmkvist, E. Lefebvre, M. Borg, L. Desplanque, X. Wallart, G. Dambrine, S. Bollaert, J. Grahn, “Characterization of insulated-gate versus Schottky-gate InAs/AlSb HEMTs,” IEEE Microwave Integrated Circuit Conference. pp. 24-27, 2007.
[3.13] R. Ventury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 48, pp.560-566, 2001.
[3.14] Z.-Y. Gao, “Development and analysis for P- channel Sb-based Heterojunction Field-Effect Transistors,” Master Thesis, National Central University, 2012.
[4.1] X. Li, K. F. Longenbach, Y. Wang, and W. I. Wang, “High-breakdown-voltage AlSbAs/InAs n-channel field-effect transistors,” IEEE Electron Device Letters, vol. 13, pp. 192-194, 1992.
[4.2] J. A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, pp. 317-23, 2011.
[4.3] P.-Y. Chen, “Gate shrinking and device charactrtization for antimonide based HEMTs development,” Master thesis, National Central University, 2011.
[4.4] A. Nainani, Y. Sun, T. Irisawa, Z. Yuan, M. Kobayashi, P. Pianetta, B. R. Bennett, J. B. Boos, and K. C. Saraswat, “Device quality Sb-based compound semiconductor surface: A comparative study of chemical cleaning,” Journal of Applied Physics, vol. 109, pp. 114908-114908-7, 2011.
[4.5] N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Xuan, and P. D. Ye, “Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric,” Applied Physics Letters, vol. 92, pp. 143507-143509, 2008.
[4.6] Y.-K. Chen, “Development and characteriszation of N- and P- channel Sb-based metal -insulator-semiconductor heterojunction field-Effect transistors,” Master thesis, National Central University, 2012.
[4.7] Z.-Y. Gao, "Development and analysis for P- channel Sb-based heterojunction field-effect transistors," Master thesis, National Central University, 2012.
|