參考文獻 |
[1]. J. B. Boos, W. Kruppa, B. R. Bennet, D. Park and S. W. Kirchofer, “AlSb/InAs HEMTs for low-voltage, high-speed applications,“ IEEE Trans. Electron Devices, vol. 45, pp. 1869-1875, 1998.
[2]. C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer and J. H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, pp. 255-258, 1992.
[3]. C. A. Chang, R. Ludeke, L. L. Chang and L. Esaki, “Molecular-beam epitaxy(MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, pp. 759-761, 1977.
[4]. M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima and M. kimata, “Molecular beam epitaxy of GaSb and GaSbxAs1-x,” Jpn. J. Appl. Phys., vol. 17, pp. 2091-2096, 1978.
[5]. R. Ludeke, “Electronic properties of (100) surfaces of GaSb, InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, pp. 304-314, 1978.
[6]. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs and In1-xGaxAsyP1-y,” J. Appl. Phys., vol. 66, pp. 6030-6040, 1989.
[7]. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Lett., vol. 89, pp. 5815-5875, 2001.
[8]. B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,“ Solid-State Electron, vol. 49, pp. 1875-1895, 2005.
[9]. F. L. Schuermeyer, P. Cook, E. Martinez, and J. Tantillo, “Band alignment in heterostructures”, Appl. Phys. Lett., vol. 55, pp. 1877-1878, 1989.
[10]. B. R. Bennett, M. G. Ancona, J. B. Boos and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Appl. Phys. Lett., vol. 91, pp. 042104-042106, 2007.
[11]. J. B. Boos, B.R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass and B. V. Shanabrook, “High mobility p-channel HFETs using strained Sb-based materials,” Electron. Lett., vol. 43, pp. 834-835, 2007.
[12]. J. B. Boos, B. R. Bennet, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, Y. C. Chou, M. D. Lange, J. M. Yang, R. Bass, D. Park and B. V. Shanabrook, “Sb based n- and p-channel heterostructure FETs for high-speed, low-power applications,” IEICE Trans. Electron., vol. E91-C, pp. 1050-1057, 2008.
[13]. M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding and Robert Chau, “High performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications,” IEEE International Electron Devices Meeting, pp. 1-4, 2008.
[14]. Aneesh Nainani, Ze Yuan, Tejas Krishnamohan, Brian R. Bennett, J. Brad Boos, Matthew Reason, Mario G. Ancona, Yoshio Nishi, and Krishna C. Saraswat, “InxGa1-xSb channel p-metal-oxide-semiconductor field effect transistors:Effect of strain and heterostructure design,” J. Appl. Phys., vol. 110, pp. 014 503-1–014 503-9, 2011.
[15]. A. L. Corrion, K. Shinohara, D. Regan, I. Milosavljevic, P. Hashimoto, P. J. Willadsen, A. Schmitz, D. C. Wheeler, C. M. Butler, D. Brown, S. D. Burnham, and M. Micovic, "Enhancement-Mode AlN/GaN/AlGaN DHFET With 700-mS/mm gm and 112-GHz ft," IEEE Elec. Dev. Lett., vol. 31, pp. 1116-1118, 2010.
[16]. D. H. Kim, J. A. del Alamo, "30 nm E-mode InAs PHEMTs for THz and future logic applications," IEEE International Electron Devices Meeting, pp. 1-4, 2008.
[17]. J. A. Robinson, S. E. Mohney, J. B. Boos, B. P. Tinkham, and B. R. Bennett, “Pd/Pt/Au ohmic contact for AlSb/InAs0.7Sb0.3 heterostructures,” Solid-State Electron, vol. 50, pp. 429-432, 2006.
[18]. E. F. Chor, W. K. Chong and C. H. Heng, “Alternative (Pd,Ti,Au) contacts to (Pt,Ti,Au) contacts for In0.53Ga0.47As,” J. Appl. Phys., vol. 84, pp. 2977-2979, 1998.
[19]. K. J. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoto, "High-performance InP-based enhancement-mode HEMTs using non-alloyed ohmic contacts and Pt-based buried-gate technologies," IEEE Transactions on Electron Devices, vol. 43, pp. 252-257, 1996.
[20]. S. Kim, H. Hwang, and I. Adesida, “Measurements of thermally induced nanometer-scale diffusion depth of Pt/Ti/Pt/Au gate metallization on InAlAs/InGaAs high-eletron-mobility transistors,” App. Phys. Lett., vol 87, pp. 232102-1-232102-3, 2005.
[21]. W. Zhao, et al., "Monolithic integration of thermally stable enhancement-mode and depletion-mode InAlAs/InGaAs/InP HEMTs utilizing Ir-gate and Ag-ohmic contact technologies," IEEE International Electron Devices Meeting, pp. 1-4, 2006.
[22]. R. Wang, P. Saunier, Y. Tang, T. Fang, X. Gao, S. Guo, G. Snider, P. Fa, D. Jena, and H. Xing, " Enhancement-Mode InAlN/AlN/GaN HEMTs With10−12 A/mm Leakage Current and 1012 ON/OFF Current Ratio," IEEE Elec. Dev. Lett., vol. 32, pp. 309-311, 2011.
[23]. Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, "Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode," IEEE Trans. Electron Devices, vol. 53, pp. 2207-2215, 2006.
[24]. P. K. Chu, “Recent developments and applications of plasma immersion ion implantation,” J. Vac. Sci. Technol. B, vol. 22, pp. 289–296, 2004.
[25]. H. K. Lin, “The Design, Growth, and Characterization of Antimonide-Based Composite-Channel Heterostructure Field-Effect Transistors,” Ph.D. dissertation, UC Santa Barbara, 2004.
[26]. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. I. Misfit dislocations,” Jour. Crys. Grow., vol. 27, pp.118-125, 1974.
[27]. C. C. Liao, “Antimonide-Based Field-Effect Transistors And Heterojunction Bipolar Transistors Grown By Molecular Beam Epitaxy,” Ph.D. dissertation, UI Urbana-Champaign, 2011.
[28]. B. R. Bennett, J. B. Boos, M. G. Ancona, N. Papanicolaou, J. G. Champlain, R. Bass, and B. V. Shanabrook, “Mobility Enhancement in Strained Antimonide Quantum Wells” M. Scie Tech, 2008.
[29]. 廖耕瑩,“銻化銦鎵/銻化鋁高電洞遷移率異質接面場效電晶體之發展,”碩士論文,國立中央大學,2010.
[30]. B. R. Bennett, S. A. Khan, J. B. BOOS, N. A. Papanicolaou, and V. V. Kuznetsov, “AlGaSb Buffer Layers for Sb-Based Transistors,” J. Elec. Mate., vol. 39, pp. 2196-2202, 2010.
[31]. H. C. Ho, Z. Y. Gao, H. K. Lin, P. C. Chiu, Y. M. Hsin, and J. I. Chyi, “Device Characteristics of InGaSb/AlSb High-Hole-Mobility FETs,” Elec. Dev. Lett, 2012.
[32]. J. D.Wiley, “Chapter 2 mobility of holes in III–V compounds,” Semicond. Semimetals, vol. 10, pp. 91–174, 1974.
[33]. P. R. Berger, K. Chang, P. Bhattacharya, J. Singh, and K. K. Bajaj, “Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime,” Appl. Phys. Lett., vol. 53, pp. 684–686, 1988.
[34]. M. J. Ekenstedt, S. M. Wang, and T. G. Andersson, “Temperature-dependent critical layer thickness for In0.36Ga0.64As/GaAs single quantum wells,” Appl. Phys. Lett., vol. 58, pp. 854-855, 1991
[35]. N. Chaturvedi, U. Zeimer, J. Würfl and G. Tränkle, ”Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Science Technology, vol. 21, pp. 175-179, 2006.
[36]. Y. Todokoro, “Double-Layer Resist Films for Submicrometer Electron-Beam Lithography,” IEEE Solid State Circuits, vol. 15, pp. 508-513, 1980.
[37]. 陳沛煜,“銻化物高電子遷移率場效電晶體之閘極微縮製程發展與元件特性研究,”碩士論文,國立中央大學,2011.
[38]. G. Piaszenski, “Basic Resist Theory,” Raith GmbH (http://www.raith.com/).
[39]. D. H. Kim, J. A. del Alamo, J. H. Lee, and K. S. Seo, "Logic Suitability of 50-nm In0.7Ga0.3As HEMTs for Beyond-CMOS Applications," IEEE Trans. Electron Devices, vol. 54, pp. 2606-2613, 2007.
[40]. C. H. Chen, C. W. Yang, H. C. Chiu, and Jeffrey. S. Fu, “Characteristic comparison of AlGaN/GaN enhancement-mode HEMTs with CHF3 and CF4 surface treatment”, J. Vacu. Scie. Tech. B, vol. 30, p. 021201-1-021201-6, 2012 |