科目: 工程數學A(3003)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系 (丁組)

陽明大學生物醫學工程學系(醫學電子組)

1. (Total 15%)

Let $M_{n\times n}(C)$ be the vector space consisting of all $n\times n$ matrices with complex entries. Two matrices $A,B\in M_{n\times n}(C)$ are said to be unitarily equivalent if there exists a unitary matrix $P\in M_{n\times n}(C)$ such that $A=P^*BP$, where P^* is the conjugate transpose of P.

(a) (10%) Let $A,B \in M_{n \times n}(C)$ be unitarily equivalent. Show that $tr(A^*A) = tr(B^*B)$.

(b) (5%) Determine whether the matrices $A = \begin{pmatrix} 1 & 2 \\ 2+i & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1+2i & 1 \\ 4i & 2 \end{pmatrix}$ are unitarily equivalent (you need to justify your answer)?

2. (Total 10%)

Let $P_2(R)$ be a vector space that consists of all polynomials with real coefficients and with degree less or equal to 2. Let T be a linear operator on $P_2(R)$ defined by

$$T f(x) = f(2x-1) - 2xf'(x),$$

for all $f(x) \in P_2(R)$.

(a) (6%) Suppose that $\beta = \{1 + x^2, x + x^2, 1 + x + x^2\}$ is an ordered basis for $P_2(R)$. Find the matrix representation of T in β , i.e., $[T]_{\beta}$.

(b) (4%) Let $A = [T]_{\beta}$ and let U be a linear operator on R^3 defined by

$$U(x) = Ax$$

for all $x \in \mathbb{R}^3$. Find a basis for the range space of U.

3. (Total 20%)

(a) (6%) Solve
$$y' + \frac{1}{x} \cdot y = 3x^2$$
.

(b) (14%) Given the differential equation: $\ddot{x}(t) + a \cdot \dot{x}(t) + b \cdot x(t) = u(t)$ where u(t) is a unit-step function, the response x(t) is expressed as: $x(t) = 0.01 \cdot \left[1 - c \cdot e^{-5\sqrt{2} \cdot t} \cdot sin(5\sqrt{2} t + \theta)\right]$. All initial conditions are zero. Please calculate the constants a, b, c, and the angle θ (the unit is radian).

注:背面有試題

科目: 工程數學A(3003)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

陽明大學生物醫學工程學系(醫學電子組)

4. (Total 15%)

If a periodic function whose Laplace transform is shown as:

$$F(s) = \frac{s}{(s^2 + 1)(1 - e^{-\pi s})}$$

- (a) (10%) Using power series to expand $\frac{1}{1-e^{-\pi s}}$ and find the corresponding periodic function f(t).
- (b) (5%) Please plot this function f(t) in t-domain.

5. (Total 15%)

For a function: $f(x) = |\sin x|$, where $-\pi < x < \pi$. If we wish to use a function g(x), which is in a finite-dimensional vector space V spanned by trigonometric functions: $\sin nx$ and $\cos nx$ for n = 0 to 5, to approximate f(x).

(a) (6%) Does the set $\{\sin x, \sin 2x, \sin 3x, \sin 4x, \sin 5x, \cos 0x, \cos x, \cos 2x, \cos 3x, \cos 4x, \cos 5x\}$ form an orthogonal basis in V for $-\pi < x < \pi$?

(b) (9%) Please find g(x) in V that is "closest" to f(x), i.e., g(x) is with minimum square error from f(x) in V. You may need the following formulas:

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)], \quad \cos x \sin y = \frac{1}{2} [\sin(x+y) - \sin(x-y)],$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)], \quad \sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$$

6. (Total 25%)

Evaluate the integrals (counterclockwise)

(a) (10%)
$$\oint_C \frac{e^z}{\cos z} dz$$
, $C:|z| = 4.5$

(b) (15%)
$$\frac{1}{2\pi i} \int_{z-i\infty}^{z+i\infty} F(z) dz$$
, where $F(z) = \frac{2kz}{(z^2 + k^2)^2}$ and k is a constant.