摘要(英) |
Title: Improvement and Optimization Design of Fork for G10 TFT-LCD Glass Panel Handling
This research aims to develop a fork design for G10 TFT LCD glass panel handling. An optimum design of the fork is achieved, using finite element analysis software ABAQUS and response surface methodology.
First, the deflection from a static analysis of a G6 fork was performed and compared with experimental results to validate the finite element analysis. Then, the deflections of G4.5 fork of 3 lightweight, high-stiffness materials were simulated. Analysis results revealed that among the 3 materials, Carbon Fiber Reinforced Plastics (CFRP) was superior to Aluminum Alloy (A6061-T6) by 58.3%, and Magnesium Alloy (AZ91) by 55.3%. In addition, hollow cross-section is the best among the 4 cross-sections for fork deflection. Adding stiffening ribs alos reduces the deflection by 25.7%
According to the results of G4.5 fork design, optimum design of G10 fork with hollow cross-section was explored by using response surface methodlogy. In the constrained optimization analysis, the objective is minimum cost (volume) of the fork, while the constraint is that deflection is no more than 20mm (cassettes space of G8 LCD cassettes). For the achieved optimum design, the predicted deflection by response surface methodology is 18.84mm, and deflection from finite element analysis is 19.11mm.
Keywords: LCD monitor、Robot-fork、Finite Element Method、Response Surface Methodology |
參考文獻 |
[1] 苗村省平原著,陳建銘編譯,液晶顯示器入門,全華科技圖書,2005年。
[2] 張充鑫,賴連康,自動化概論,全華科技圖書,2003年。
[3] 王永豪,「液晶顯示器搬送機械手臂對應其卡匣之匹配設計」,私立逢甲大學,碩士論文,民國96年1月。
[4] 徐順成,「液晶玻璃基板移載機之牙叉結構改良與最佳化設計」,國立台北科技大學,碩士論文,民國99年1月。
[5] F. Gordaninejad, A. Ghazavi and N. G. Chalhoub, Dynamic stress analysis of a laminated composite-material flexible robot arm, In Recent Adtances in Microand Macro Mechanics of Composite Materials, ASME AD-Vol. 13, 1988, pp. 213-218 .
[6] R. Chandra, A. D. Stemple and I. Chopra, Thin-walled composite beams under-bending,torsional and extensional loads. J. Aircrafi 27, 1990, pp. 619-
626.
[7] D. G. Lee, K. S. Kim, Y. K. Kwak, Manufacturing of a SCARA type direct-drive robot with graphite fiber epoxy composite material, Robotica, 9, 1991, pp. 219-229.
[8] E. C. Smith, I. Chopra, Formulation and evaluation of an analytical model for composite box-beams, J. Am. Helicopter Soc. 36, 1991, pp. 23-25.
[9] S. M. Jeon, M. H. Cho , In Lee, Static and dynamic analysis of composite box beam using large deflection theory, Computer & Structure, 57, 1995, pp. 635-642.
[10] Y. Wu, X. Wang, Q. Su, L. Lin, A solution for laminated box beams under bending loads using the principle of complementary energy, Composite Structures, 79, 2007, pp. 376-380.
[11] S. Suresh, P. B. Sujit, A. K. Rao, Particle swarm optimization approach for multi-objective composite box-beam design, Compos Struct, 81, 2007, pp. 598–605.
[12] V. Manet, The use of ANSYS to calculate the behavior of sandwich structures, Composite Science and Technology, 58, 1998, pp. 1899-1905.
[13] J. H. Oh , D. G. Lee, H. S. Kim, Composite robot end effector for manipulating large LCD glass panels, Composite structure, 47, 1999, pp. 497-506.
[14] C. S. Lee, D. G. Lee, J. H. Oh, H. S. Kim, Composite wrist blocks for double arm type robots for handling large LCD glass panels, Composite Structures, 57, 2002, pp. 345–55.
[15] S. C. Jung, J. E. Lee, S. H. Chang, Design of inspecting machine for next generation LCD glass panel with high modulus carbonepoxy composites, Composite Structure, 66, 2004, pp. 439-447.
[16] 東芝機械株式會社-制御 SYSTEM 事業部,SCARA Robot自動化技術APPLICATION,2007年1月。
[17] R. D. Cook, W. C. Young, “Advanced Mechanics of Materials”, 良宜圖書, 1985.
[18] 士盟科技股份有限公司-CAE事業部,ABAQUS分析應用,2012年8月。
[19] 劉惟信,機械最佳化設計,全華科技圖書,2003年。
[20] 葉怡成,實驗計畫法-製程與產品最佳化,五南文化圖書,2005年12月。
[21] 曾淯瑄,「複合材料機械手臂牙叉之結構分析」,私立逢甲大學,碩士論文,民國99年6月。 |