台灣聯合大學系統102學年度碩士班招生考試命題紙 共_6_頁第___頁

科目: 工程數學 C(3006)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組) 交通大學電控工程研究所 交通大學電機工程學系(甲組) 交通大學電信工程研究所(乙組) 交通大學生醫工程研究所(乙組) 清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

- 本測驗試題為複選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請用2B鉛筆作答於答案卡。
- 共二十題,每題完全答對得五分,答錯不倒扣。
- In the following questions, $\delta(t)$ is the Dirac delta function, u(t) is unit-step function, \star is the convolution operator, $\mathcal{L}: f(t) \mapsto F(s)$ and $\mathcal{L}^{-1}: F(s) \mapsto f(t)$ denote the <u>unilateral</u> Laplace and inverse Laplace transforms for $t \geq 0$, respectively, boldface letters such as a, b, etc. denote vectors of proper length, A^{T} means the transpose of matrix A, and I is the identity matrix of proper size.
- Suppose that B_1 and B_2 are square invertible matrices. Let 0 denote an all-zero matrix of proper size. Define

$$B = \begin{bmatrix} B_1 & \mathbf{0} \\ \mathbf{0} & B_2 \end{bmatrix}$$
 and $C = \begin{bmatrix} B_1^{-1} & \mathbf{0} \\ \mathbf{0} & B_2^{-1} \end{bmatrix}$.

Denote by P a permutation matrix of the same size as B and C. Which of the following statements are true?

- (A) $BC = P^{\mathsf{T}}P$
- (B) $P^{\mathsf{T}}P = PP^{\mathsf{T}}$.
- (C) $B^{\mathsf{T}}CBPC^{-1}B^{-1}P^{\mathsf{T}}C^{\mathsf{T}} = I$
- (D) There exists an integer $k \neq 1$ such that $P^k = P$.
- (E) None of the above are true.
- \pm . Using the forward elimination process with possible row exchanges to produce an upper triangular matrix U, which of the following statements are true?
 - (A) When performing forward elimination on matrix $B = \begin{bmatrix} B_1 & \mathbf{0} \\ \mathbf{0} & B_2 \end{bmatrix}$ to produce an upper triangular matrix U, where B_1 and B_2 are square matrices and $\mathbf{0}$ denotes an all-zero matrix of proper size, U can be made to be equal to $U = \begin{bmatrix} U_1 & \mathbf{0} \\ \mathbf{0} & U_2 \end{bmatrix}$, where U_1 and U_2 are respectively the resulting forward elimination upper triangular outputs due to inputs B_1 and B_2 .
 - (B) Suppose that $P_1B_1 = L_1U_1$ and $P_2B_2 = L_2U_2$, where P_1 and P_2 are permutation matrices, L_1 and L_2 are square lower triangular matrices, and U_1 and U_2 are square upper triangular matrices. Then,

$$\begin{bmatrix} P_1 & \mathbf{0} \\ \mathbf{0} & P_2 \end{bmatrix} \begin{bmatrix} B_1 & \mathbf{0} \\ \mathbf{0} & B_2 \end{bmatrix} = \begin{bmatrix} L_1 & \mathbf{0} \\ \mathbf{0} & L_2 \end{bmatrix} \begin{bmatrix} U_1 & \mathbf{0} \\ \mathbf{0} & U_2 \end{bmatrix}.$$

(C) To perform forward elimination on a matrix $F = \begin{bmatrix} A & \mathbf{0} \\ C & D \end{bmatrix}$ to produce an upper triangular matrix U, where A, C and D are square invertible matrices, we can first do block-based forward elimination to obtain $G = \begin{bmatrix} A & \mathbf{0} \\ \mathbf{0} & D \end{bmatrix}$; then perform forward elimination respectively on A and D to obtain upper triangular U_A and U_D . The desired U is thus given by $\begin{bmatrix} U_A & \mathbf{0} \\ \mathbf{0} & U_D \end{bmatrix}$.

科目: 工程數學 C(3006)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所

交通大學電機工程學系(甲組)

交通大學電信工程研究所(乙組)

交通大學生醫工程研究所(乙組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

- (D) To perform forward elimination on a matrix $F = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ to produce an upper triangular matrix U, where A, B, C and D are square invertible matrices, U can be made to be equal to $\begin{bmatrix} U_A & \mathbf{0} \\ \mathbf{0} & U_D \end{bmatrix}$, where U_A and U_D are respectively the forward elimination upper triangular outputs due to inputs A and D.
- (E) None of the above are true.
- Ξ \(\text{Let } A \in \mathbb{R}^{n \times n} \) and $b \in \mathbb{R}^n$ be nonzero matrix and nonzero vector, respectively. Which of the following sets are subspaces of \mathbb{R}^n ?
 - (A) $\{x \in \mathbb{R}^n | Ax = b\}.$
 - (B) $W_1 \cap W_2$, where W_1 and W_2 are two subspaces of \mathbb{R}^n .
 - (C) $\{x = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n | \sum_{i=1}^n x_i = 0 \}.$
 - (D) $\{x(t) = (x_1(t), x_2(t), \dots, x_n(t))^T | x'(t) = Ax(t) + b \}.$
 - (E) None of the above are true.
- 吗、 Which of the following statements are true?
 - (A) Let u_1, \ldots, u_k , k < n, be linearly independent unit vectors in \mathbb{R}^n and $U = \begin{bmatrix} u_1 & \cdots & u_k \end{bmatrix} \in \mathbb{R}^{n \times k}$. Then, $I_n - UU^T$ is a projection matrix that projects a vector onto the column space of U, where I_n is an identity matrix of size $n \times n$.
 - (B) Let $A \in \mathbb{R}^{n \times k}$, k < n and rank(A) = k. Then $A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$ is the projection matrix that projects a vector onto the column space of A.
 - (C) Let $A \in \mathbb{R}^{n \times k}$, n < k and rank(A) = n. Then $\mathbf{x} = A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1} \mathbf{b}$ is the solution of $A\mathbf{x} = \mathbf{b}$ having minimum Euclidean norm.
 - (D) All the orthogonal matrices of $\mathbb{R}^{2\times 2}$ can be expressed either in the form of $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ or $\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$.
 - (E) None of the above are true.
- \mathcal{H} . Let A=QR be the QR factorization of A, where $A=\begin{bmatrix}a_1 & \cdots & a_n\end{bmatrix} \in \mathbb{R}^{n \times n}$, and $Q=\begin{bmatrix}q_1 & \cdots & q_n\end{bmatrix} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, and $R=\begin{bmatrix}r_{i,j}\end{bmatrix} \in \mathbb{R}^{n \times n}$ is an upper triangular matrix. Which of the following statements are true?
 - (A) a_k and q_k are linearly dependent for any k < n.
 - (B) $\operatorname{span}\{a_1, \dots, a_k\} = \operatorname{span}\{q_1, \dots, q_k\}$ for any $k \leq n$.
 - (C) $\{q_i | r_{i,i} \neq 0, i = 1, 2, ..., n\}$ is an orthonormal basis of the column space of A.
 - (D) If $r_{k,k} = 0$, then the vectors $\{a_1, \dots, a_k\}$ are linearly dependent.
 - (E) None of the above are true.
- $\dot{\pi}$ Consider a 4 × 4 real matrix A with three different eigenvalues 0, 1, 2. Which of the following statements are true?

台灣聯合大學系統102學年度碩士班招生考試命題紙 共_6_頁第_3_頁

科目: 工程數學 C(3006)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所

交通大學電機工程學系(甲組)

交通大學電信工程研究所(乙組)

交通大學生醫工程研究所(乙組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

- (A) The determinant of A is 0.
- (B) There are three linearly independent eigenvectors.
- (C) The rank of A is 2.
- (D) The trace of A is 3.
- (E) None of the above are true.
- $+\cdot$ Consider two similar real matrices A and B. Which of the following statements are true?
 - (A) A and B have the same set of eigenvalues.
 - (B) A and B have the same set of eigenvectors.
 - (C) A and B have the same null space.
 - (D) A and B have the same rank.
 - (E) None of the above are true.
- Consider an $m \times n$ real matrix A with linearly independent columns, and m > n. Which of the following statements are true?
 - (A) $A^{\mathsf{T}}A$ is positive definite.
 - (B) AA^{T} is positive definite.
 - (C) The column space of A is spanned by all the eigenvectors of AA^{T} .
 - (D) The row space of A is spanned by all the eigenvectors of $A^{\mathsf{T}}A$.
 - (E) None of the above are true.
- 九、 Which of the following statements are true?

(A) Let
$$A = \begin{bmatrix} 1 + \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ \alpha_1 & 1 + \alpha_2 & \cdots & \alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1 & \alpha_2 & \cdots & 1 + \alpha_n \end{bmatrix}$$
. Then, $\det(A) = 1 + n \sum_{i=1}^n \alpha_i$

- (B) Let A be a square matrix, and c and d be two column vectors. If Ax = c, then $det(A + cd^T) = det(A)(1 + d^Tx)$.
- (C) Consider the 4×4 orthogonal projection matrix $Q = I uu^T$, where $u \in \mathbb{R}^4$ and I is the 4×4 identity matrix. Then $\det(Q) + \operatorname{rank}(Q) = 4$.
- (D) One can construct a 3×3 Hermitian matrix A with complex-valued entries such that $\det(A) = 1 + i$, where $i = \sqrt{-1}$.
- (E) None of the above are true.
- + . Which of the following statements are true?
 - (A) Let T be a linear transformation from \mathbb{R}^n onto \mathbb{R}^m . Then T is one-to-one.
 - (B) Let T be a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Then $\{v_1, \ldots, v_k\}$ can be linearly dependent even if $\{Tv_1, \ldots, Tv_k\}$ is linearly independent.

注:背面有試題

台灣聯合大學系統102學年度碩士班招生考試命題紙 共 6 頁第4頁

科目: 工程數學 C(3006)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所

交通大學電機工程學系(甲組)

交通大學電信工程研究所(乙組)

交通大學生醫工程研究所(乙組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

- (C) Let T be a linear transformation from \mathbb{R}^n to \mathbb{R}^n , and let $S \subset \mathbb{R}^n$ be a subspace such that $Ts \in S$ for all $s \in S$. Then $\dim(S) \in \{0, 1, n\}$, where $\dim(S)$ denotes the dimension of S.
- (D) Let $A \in \mathbb{R}^{m \times n}$ with m > n > 3. Then $rank(AA^T) < rank(A)$.
- (E) None of the above are true.
- $+-\cdot$ Consider the first order differential equation $(4xy+1) dy + y^2 dx = 0$. Which of the following statements are
 - (A) $x = y^{-1} + Cy^{-4}$ for some constant C is the general solution.
 - (B) $3xy^4 + y^3 = C$, where $y \neq 0$ and C is some constant, is an implicit solution.
 - (C) y(x) = 0 is a solution.
 - (D) If the solution curve passes through the point (0,3) in the x-y plane, then it also passes through the point (7,1).
 - (E) None of the above are true.
- +: Given one solution $y_1(x) = e^x$ to the homogeneous second order linear differential equation (x+1)y''(x)(x+2)y'(x)+y(x)=0 with x>-1, the second linearly independent solution $y_2(x)$ takes the form of $y_2(x) = v(x)y_1(x)$. Which of the following statements are true?
 - (A) The function v(x) satisfies (x+1)v''(x) (x+2)v'(x) = 0.
 - (B) The function v(x) satisfies (x+1)v''(x) + xv'(x) = 0.
 - (C) $v(x) = xe^x$.
 - (D) $v(x) = (2+x)e^{-x}$.
 - (E) None of the above are true.
- $+ \equiv \cdot$ Solve the third order differential equation $y'''(x) \frac{3}{x}y''(x) + \frac{6}{x^2}y'(x) \frac{6}{x^3}y(x) = \frac{1}{x^4}$ with x > 0. Which of the following statements are true?
 - (A) $y(x) = -\frac{1}{24}x^{-1}$ is a solution.
 - (B) $y(x) = \frac{1}{24}x$ is a solution.
 - (C) $y(x) = \frac{1}{24}(x x^{-1})$ is a solution.
 - (D) If the solution y(x) satisfies y(1) = 0, $y'(1) = \frac{1}{6}$, and $y''(1) = \frac{1}{6}$, then $y(2) = \frac{1}{16}$.
 - (E) None of the above are true.
- 十四、 Consider the system of linear differential equations

$$x'(t) = Ax(t)$$
, where $A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$.

Which of the following statements are true?

(A)
$$x(t) = \begin{bmatrix} 2\cos(t) - \sin(t) \\ \cos(t) \end{bmatrix}$$
 is a solution.

(A)
$$x(t) = \begin{bmatrix} 2\cos(t) - \sin(t) \\ \cos(t) \end{bmatrix}$$
 is a solution.
(B) $x(t) = \begin{bmatrix} \cos(t) - 2\sin(t) \\ \sin(t) \end{bmatrix}$ is a solution.

台灣聯合大學系統102學年度碩士班招生考試命題紙 共_6_頁第_5_頁

科目: 工程數學 C(3006)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所

交通大學電機工程學系(甲組)

交通大學電信工程研究所(乙組)

交通大學生醫工程研究所(乙組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系 (丁組)

(C)
$$e^{\pi A} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

(D)
$$e^{\frac{\pi}{2}A} = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$$
.

- (E) None of the above are true.
- 十五、 Which of the following statements are true?

(A)
$$\mathcal{L}\left\{\int_0^t \sin\left(a(t-\tau)\right)\sin\left(a\tau\right) d\tau\right\} = \frac{1}{(s^2+a^2)^2}$$

- (B) $(\delta \star f)(t) \neq f(t)$.
- (C) $(u \star f)(t) = f(t)$, where u(t) is the unit-step function.
- (D) If $y'(t) + 2y(t) + \int_0^t y(\tau) d\tau = u(t-1)$ and y(0) = 0, then $Y(s) = \mathcal{L}\{y(t)\} = \frac{e^{-s}}{(s+1)^2}$.
- (E) None of the above are true.
- + \dot{x} . Let x(t) be the solution of the initial value problem $x''(t) + p_0x'(t) + q_0x(t) = f(t)$, $t \geq 0$, x(0) = a and x'(0) = b. Let $\mathcal{L}\{f(t)\} = F(s)$ and $\mathcal{L}\{x(t)\} = X(s)$. If $X(s) = \frac{2s+1}{s^2+2s+1} + \frac{F(s)}{s^2+2s+1}$, then which of the following statements are true?
 - (A) $p_0 + q_0 = -3$.
 - (B) a + b = -1.
 - (C) If f(t) = 0, then $x(t) = 2e^{-t} te^{-t}$.
 - (D) If $f(t) = \delta(t-3)$, then $\mathcal{L}^{-1}\left\{\frac{F(s)}{s^2+2s+1}\right\} = u(t-3)te^{-t}$.
 - (E) None of the above are true.
- + + · Consider the following non-homogeneous linear system

$$x'(t) = Ax(t) + f(t)$$
, where $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$ and $f(t) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} e^{2t}$ (*)

Given that $\lambda_1 = 1$ and $\lambda_2 = 1 + 2i$ are eigenvalues for A and that $\begin{bmatrix} 0 \\ 1 \\ -i \end{bmatrix}$ is an eigenvector of A associated with the eigenvalue λ_2 , which of the following statements are true?

(A)
$$\begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix} e^t$$
 is a solution to $x'(t) = Ax(t)$.

(B)
$$e^{At} = \begin{bmatrix} 2e^t & 0 & 0 \\ -3e^t & e^t \cos(2t) & e^t \sin(2t) \\ 2e^t & e^t \sin(2t) & -e^t \cos(2t) \end{bmatrix}$$
.

(C) The system (*) has a particular solution
$$x_p(t) = be^{2t}$$
 with $(A - 2I)b = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$.

注:背面有試題

台灣聯合大學系統102學年度碩士班招生考試命題紙 共 6 頁第 6 頁

科目: 工程數學 C(3006)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所

交通大學電機工程學系(甲組)

交通大學電信工程研究所(乙組)

交通大學生醫工程研究所(乙組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系 (丁組)

(D)
$$x_p(t) = \begin{bmatrix} -1 \\ \frac{4}{5} \\ -\frac{7}{5} \end{bmatrix} e^{2t}$$
 is a particular solution to the system (*).

- (E) None of the above are true.
- + \wedge Let $f(t) = \sum_{n=-\infty}^{\infty} g(t-n)$, where $g(t) = t^2 [u(t) u(t-2)]$. Represent f(t) in terms of Fourier series as $\tilde{f}(t) = \sum_{n\geq 0} a_n \cos(n\pi t) + b_n \sin(n\pi t)$. Which of the following statements are true?
 - (A) f(t) is a periodic function with minimum period 2.
 - (B) $b_n = -\frac{4(1+(-1)^n)}{n\pi}$ for $n \ge 1$.
 - (C) $b_n = -\frac{4(1-(-1)^n)}{n\pi}$ for $n \ge 1$.
 - (D) $\tilde{f}(t=1) = 3$.
 - (E) None of the above are true.
- $+\,\hbar$. Consider the following boundary value problem for the bivariate function g(x,t) with 10 < x < 20

$$\frac{\partial g(x,t)}{\partial t} = 5 \frac{\partial^2 g(x,t)}{\partial x^2}$$
 for $10 < x < 20$ and $t > 0$

$$g(10,t) = g(20,t) = 0$$
 for $t > 0$

Assuming g(x,t) = X(x)T(t) is separable, which of the following statements are true?

- (A) The function X(x) satisfies X''(x) + X(x) = 0 with X(10) = X(20) = 0.
- (B) Solutions to X(x) take the form of $(-1)^n \sin\left(\frac{n\pi}{10}x\right)$ for $n=1,2,\ldots$
- (C) Assuming $X(x) = \sin\left(\frac{n\pi}{20}x\right)$ for some positive integer n, the corresponding T(t) satisfies $T'(t) + \frac{n^2\pi^2}{80}T(t) = 0$.
- (D) Assuming $X(x) = \sin\left(\frac{n^2\pi}{10}x\right)$ for some positive integer n, the corresponding T(t) satisfies $T'(t) + \frac{n\pi}{10}T(t) = 0$.
- (E) None of the above are true.
- =+ · Continued from Question $+ \pi$, we further assume that g(x,0) = x for 10 < x < 20 and that the solution g(x,t) takes the form of

$$g(x,t) = \sum_{n=1}^{\infty} c_n X_n(x) T_n(t)$$

for some constants c_n . Which of the following statements are true?

(A)
$$c_n = \frac{20((-1)^n - 2)}{n\pi}$$
, $X_n(x) = \sin\left(\frac{n\pi}{10}x\right)$ and $T_n(t) = \exp\left(-\frac{n^2\pi^2}{20}t\right)$.

- (B) $c_n = \frac{20(1-2(-1)^n)}{n\pi}$, $X_n(x) = \sin\left(\frac{n\pi}{10}x\right)$ and $T_n(t) = \exp\left(-\frac{n^2\pi^2}{20}t\right)$
- (C) $\sum_{n=1}^{\infty} c_n X_n(20) T_n(0) = 20.$
- (D) $\sum_{n=1}^{\infty} c_n X_n(10) T_n(0) = 0.$
- (E) None of the above are true.

