參考文獻 |
[1] R. W. Clough and J. L. Tocher, “Finite element stiffness matrices for analysis of plate bending”, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 515-545, 1965.
[2] G. P. Bazeley, Y. K. Cheung, B. M. Irons and O. C. Zienkiewicz, “Triangular elements in plate bendingconforming and non-conforming solutions”, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 547-576, 1965.
[3] R.W. Clough and J.L. Tocher, “Finite element stiffness matrices foranalysis of plate bending”, In Proc. Conf. on Matrix Methods in Structural Mechanics, AFFDL TR 66-80,pp.515–545, 1966.
[4] R. W. Clough and C. A. Felippa, “A refined quadrilateral element for analysis of plate bending”, Proc. Conf. On Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 399-440, 1968.
[5] T. Pian, “Element stiffness matrices for prescribed boundary stresses”, Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 457-477, 1965.
[6] L. R. Herrmann, “A bending analysis for plates, Proceedings” Proc. Conf. on Matrix Methods in Structural Mechanics, WPAFB, Ohio, pp. 60-80, 1965.
[7] G. Horrigmoe, Finite element instability analysis of free-form shells., Repon No. 77-2, Norwegian Institute of Technology, Univ. of Trondheim. Norway, 1977.
[8] R. Gunderson, W. E. Haisler, J. A. Stricklin and P. R. Tisdale, “A rapidly converging triangular plate element”. AIAA journal, Vol 7(1), pp.180-181, 1969.
[9] J. L. Batoz, K. J. Bathe and L. W. Ho, “A study of three-node triangular plate bending elements”. International Journal for Numerical Methods in Engineering, Vol 15(12), pp. 1771-1812, 1980.
[10] J. L. Batoz, “An explicit formulation for an efficient triangular plate-bending element”. International Journal for Numerical Methods in Engineering, Vol 18(7), pp.1077-1089, 1982.
[11] C. Jeyachandrabose, J. Kirkhope and C. R. Babu, “An alternative explicit formulation for the DKT plate-bending element”. International journal for numerical methods in engineering, Vol 21(7), pp. 1289-1293, 1985.
[12] K. J. Bathe, “Fundamental considerations for the finite element analysis of shell structures”. Computers and Structures, Vol 66(1), pp. 19-36, 1998.
[13] K. J. Bathe, Finite element procedures (Vol. 2, No. 3). Englewood Cliffs: Prentice hall, 1996.
[14] H. Hou-Cheng, “Membrane locking and assumed strain shell elements”. Computers and structures, Vol 27(5), pp. 671-677, 1987.
[15] E. L. Wilson, R. L. Taylor, W. P. Doherty and J. Ghaboussi, “Incompatible displacement models”. Numerical and computer methods in structural mechanics. New York, Academic Press, Inc., 43-57, 1973.
[16] J. C. Simo and M. S. Rifai, “A class of mixed assumed strain methods and the method of incompatible modes”. International Journal for Numerical Methods in Engineering, Vol 29(8), pp. 1595-1638, 1990.
[17] J. C. Simo and F. Armero, “Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes”. International Journal for Numerical Methods in Engineering, Vol 33(7), pp. 1413-144, 1992.
[18] C. H. Hong and Y. H. Kim, “A partial assumed strain formulation for triangular solid shell element”. Finite elements in analysis and design, Vol 38(4), pp. 375-390, 2002.
[19] J. H. Kim and Y. H. Kim, “A three-node C0 ANS element for geometrically non-linear structural analysis”. Computer methods in applied mechanics and engineering, Vol 191(37), pp. 4035-4059,2002.
[20] T. Wenzel and H. Schoop, “A non-linear triangular curved shell element”. Communications in numerical methods in engineering, Vol 20(4), pp. 251-264, 2004.
[21] K. J. Bathe, A. Iosilevich and D. Chapelle, “An evaluation of the MITC shell elements”. Computers and Structures, Vol 75(1), pp. 1-30, 2000.
[22] P. S. Lee and K. J. Bathe, “Development of MITC isotropic triangular shell finite elements”. Computers and structures, Vol 82(11), pp. 945-962, 2004.
[23] E. M. B. Campello, P. M. Pimenta and P. Wriggers, “A triangular finite shell element based on a fully nonlinear shell formulation”. Computational Mechanics, Vol 31(6), pp. 505-518, 2003.
[24] S. Wu, G. Li and T. Belytschko, “A DKT shell element for dynamic large deformation analysis”. Communications in numerical methods in engineering, Vol 21(11), pp. 651-674, 2005.
[25] K. J. Bathe and L. W. Ho, “A simple and effective element for analysis of general shell structures”. Computers and Structures, Vol 13(5), pp. 673-681, 1981.
[26] T. Wenzel and H. Schoop, “A non-linear triangular curved shell element”. Communications in numerical methods in engineering, Vol 20(4), pp. 251-264, 2004.
[27] K. J. Bathe and S. Bolourchi, “A geometric and material nonlinear plate and shell element”. Computers and structures, Vol 11(1), pp. 23-48, 1980.
[28] ANSYS User’s Manual, Theory, Ninth Edition, SAS IP, Inc., 1997.
[29] C. C. Rankin and F. A. Brogan, “An element independent corotational procedure for the treatment of large rotations”. Journal of pressure vessel technology, Vol 108(2), pp. 165-174, 1986.
[30] A. A. Shabana, “Finite element incremental approach and exact rigid body inertia”. Journal of Mechanical Design, Vol 118, pp. 171-178, 1996.
[31] J. M. Battini and C. Pacoste, “On the choice of the linear element for corotational triangular shells”. Computer methods in applied mechanics and engineering, Vol 195(44), pp. 6362-6377, 2006.
[32] P. Norachan, S. Suthasupradit and K. D. Kim, “A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain”. Finite Elements in Analysis and Design, Vol 50, pp. 70-85, 2012.
[33] Li, Z., and Vu‐Quoc, L. (2007). An efficient co-rotational formulation for curved triangular shell element. International Journal for Numerical Methods in Engineering, 72(9), 1029-1062.
[34] E. C. Ting, C. Shih and Y. K. Wang, “Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element”. Journal of Mechanics, Vol 20(2), pp. 113-122, 2004.
[35] E. C. Ting, C. Shih and Y. K. Wang, “Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements”. Journal of Mechanics, Vol 20(02), pp. 123-132, 2004.
[36] C. Shih, Y. K. Wang, and E. C. Ting, “Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples”. Journal of Mechanics, Vol 20(02), pp. 133-143,2004.
[37] 丁承先, 王仲宇, 吳東岳, 王仁佐, 莊清鏘, 「運動解析與向量式有限元(2.0 版) 」, 中央大學工學院, 橋梁工程研究中心,民國96年。
[38] J. C. Simo, and L. Vu-Quoc, “On the Dynamics of Flexible Beams Under Large Overall Motions---The Plane Case: Part I”. Journal of Applied Mechanics, Vol 53, pp. 849-854, 1986.
[39] J. C. Simo, and L. Vu-Quoc, “A three-dimensional finite-strain rod model. Part II: Computational aspects”. Computer methods in applied mechanics and engineering, Vol 58(1), pp. 79-116, 1986.
[40] T. Belytschko, B. L. Wong and H. Y. Chiang, “Advances in one-point quadrature shell elements”. Computer Methods in Applied Mechanics and Engineering, Vol 96(1), pp. 93-107, 1992.
[41] A. M. Mikkola and A. A. Shabana, “A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications”. Multibody System Dynamics, Vol 9(3), pp. 283-309, 2003.
[42] D. Kuhl and E. Ramm, “Generalized energy–momentum method for non-linear adaptive shell dynamics”. Computer Methods in Applied Mechanics and Engineering, Vol 178(3), pp. 343-366, 1999.
[43] J. Argyris, M. Papadrakakis and Z. S. Mouroutis, “Nonlinear dynamic analysis of shells with the triangular element TRIC”. Computer Methods in Applied Mechanics and Engineering, Vol 192(26), pp. 3005-3038, 2003.
[44] Y. Başar and Y. Ding, “Finite-rotation shell elements for the analysis of finite-rotation shell problems”. International journal for numerical methods in engineering, Vol 34(1), pp.165-169, 1992.
[45] C. Sansour and F. G. Kollmann, “Families of 4-node and 9-node finite elements for a finite deformation shell theory. An assesment of hybrid stress, hybrid strain and enhanced strain elements”. Computational Mechanics, Vol 24(6), pp. 435-447, 2000.
[46] K. Y. Sze, W. K. Chan and T. H. H. Pian, “An eight-node hybrid‐stress solid-shell element for geometric non-linear analysis of elastic shells”. International Journal for Numerical Methods in Engineering, Vol 55(7), pp. 853-878, 2002.
[47] J. C. Simo, D. D. Fo, and M. S. Rifai, “On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory”. Computer Methods in Applied Mechanics and Engineering, Vol 79(1), pp. 21-70, 1990.
[48] V. Adams and A. Askenazi, Building better products with finite element analysis. Santa Fe, NM: OnWord Press, 1999.
[49] R. Z. Wang, K. C. Tsai and B. Z. Lin, “Extremely large displacement dynamic analysis of elastic–plastic plane frames”. Earthquake Engineering and Structural Dynamics, Vol 40(13), pp.1515-1533, 2011.
[50] T. Y. Wu and E. C. Ting, “Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element”. Thin-Walled Structures, Vol 46(3), pp. 261-275, 2008.
[51] G. Zheng, X. Cui, G. Li and S. Wu, “An edge-based smoothed triangle element for non-linear explicit dynamic analysis of shells”. Computational Mechanics, Vol 48(1), pp. 65-80, 2011.
[52] I. Romero and F. Armero, “Numerical integration of the stiff dynamics of geometrically exact shells: an energy-dissipative momentum-conserving scheme”. International journal for numerical methods in engineering, Vol 54(7), pp. 1043-1086, 2002.
[53] G. Zi, and T. Belytschko, “New crack-tip elements for XFEM and applications to cohesive cracks”. International Journal for Numerical Methods in Engineering, Vol 57(15), pp. 2221-2240, 2003.
[54] Abaqus User’s Manual, 6.12 Documentation, 2012.
[55] 李東奇,「向量式有限元時間積分法之研究」,中原大學土木工程研究所,碩士論文, 民國97年。
[56] 賴哲宇,「向量式有限元素法之分散式計算應用於平面構架運動分析」,中原大學土木工程研究所,碩士論文,民國95年。
[57] 王仁佐, 「向量式結構運動分析」,國立中央大學土木工程研究所,博士論文,民國95年。
[58] Wu, T. Y., Wang, R. Z., and Wang, C. Y. (2006). Large deflection analysis of flexible planar frames. Journal of the Chinese Institute of Engineers, 29(4), 593-606.
[59] 陳建霖, 「向量式有限元素法於平面構架彈塑性及斷裂之應用」,中原大學土木工程研究所,碩士論文,民國94年。
[60] 吳思穎, 「向量式剛架有限元於二維結構之大變位與接觸行為分析」, 國立中央大學土木工程研究所,碩士論文,民國94年。
[61] 林明廷, 「二維可變形塊體之向量式運動分析」,國立中央大學土木工程學系,碩士論文,民國94年。
[62] 王國昌, 「混凝土結構之非線性不連續變形分析」, 國立中央大學土木工程研究所,博士論文,民國93年。
[63] 陳柏宏,「運用向量式有限元素法於隔震橋梁之非線性動力分析」 ,國立中央大學土木工程研究所,碩士論文,民國97年。
[64] 蔡宗和, 「向量式有限元固體元素內併入剛架元素之應用研究」,國防大學中正理工學院軍事工程研究所,碩士論文,民國92年。
[65] 鄭凱文, 「三維顆粒介質與變形體互制行為之數值模擬」, 國立中央大學土木工程研究所,碩士論文,民國92年。
[66] 賴建豪, 「向量式有限元素法於平面構架幾何非線性之應用」, 中原大學土木工程研究所,碩士學位論文,民國92年。
[67] 陳世凱, 「向量式有限元素法於空間桁架之應用」,中原大學土木工程研究所,碩士論文, ,民國93年。
[68] 吳政翰, 「三維實體運動模擬與圖形化使用者介面之建立」,中原大學土木工程研究所,碩士論文,民國94年。
[69] T. Y. Wu, C. Y. Wang, C. C. Chuang and E. C. Ting, “Motion analysis of 3D membrane structures by a vector form intrinsic finite element”. Journal of the Chinese Institute of Engineers, Vol 30(6), pp. 961-976, 2007.
[70] 張博彥,「向量式有限元素法—平板元素之發展與應用」,國立中山大學海洋環境及工程學系,博士論文,民國98年。
[71] 鍾沛穎,「向量式有限元素法:薄殼元素之發展與其工程應用」, 國立中山大學海洋環境及工程學系,博士論文,民國99年。
[72] T.Y. Wu and E. C. Ting, “Elastoplastic and Large Deflection Analysis of Shells Using a Vector Form Intrinsic Finite Element”, The 36th National Conference on Theoretical and Applied Mechanics, pp. 16-17, November 2012.
[73] 陳詩宏,「向量式有限元素法於被動結構控制元件模擬之應用」,中原大學土木工程研究所,碩士論文,民國95年。
[74] 陳彥樺,「移動質量與荷載作用下之剛架結構動力行為分析」,國立中央大學土木工程研究所,碩士論文,民國96年。
[75] 劉奕廷,「應用向量式有限元素法於施工階段結構物之模擬」,中原大學土木工程研究所,碩士論文,民國96年。
[76] 蕭程瑞,「向量式有限元於三維構架被動控制之應用」,中原大學土木工程研究所,碩士論文,民國97年。
[77] 吳志軒,「FRP 貼布混凝土構件之數值模擬分析」, 中原大學土木工程研究所,碩士論文,民國97年。
[78] 施柔依,「向量式有限元運用於車軌橋互制數值模擬分析」,國立中央大學土木工程研究所,碩士論文,民國99年。
[79] 丸善, 孫緯翰,「應用向量式有限元素法於撓性機構的運動分析」,臺灣大學機械工程學研究所, "構造力学公式集",民國93年。
[80] 李昆晃,「以向量式有限元素法分析具間隙撓性連桿機構」,臺灣大學機械工程學研究所,碩士論文,民國94年。
[81] 陳仲恩,「運動解析應用於三維機構分析」,臺灣大學機械工程學研究所,碩士論文,民國96年。
[82] 張燕如, 「鋼結構火害反應之向量式有限元素法分析」, 國立成功大學土木工程學系,碩士論文,民國96年。
[83] 魏子凌,「含溫度效應之向量式有限元素法於平面構架運動分析」,中原大學土木工程研究所,碩士論文,民國96年。
[84] 劉君厚,「向量式有限元於平面構架之火害模擬」,中原大學土木工程研究所,碩士論文,民國97年。
[85] 曾國瑋, 「應用向量式有限元於剛架式海域結構物之動力分析」,國立中山大學海洋環境及工程學系研究所,碩士論文,民國96年。
[86] P. Y. Chang, K. W. Tseng, H. H. Lee and P. Y. Chung, “A new vector form of finite element applied to offshore structures”. In 4th International Conference on Advances in Structural Engineering and Mechanics, 2008.
[87] H. C. Chen, “Evaluation of Allman triangular membrane element used in general shell analyses”. Computers and structures, Vol 43(5), pp. 881-887, 1992. |