以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:204 、訪客IP:3.139.86.160
姓名 潘普翠(Putri Adhitana Paramitha) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 透水性鋪面與傳統鋪面在高溫夏季情況下對氣溫與能源 消耗之影響-以國立中央大學圖書館為例
(Permeable Pavement and Traditional Pavement Effect on Air Temperature and Energy Consumption during Hot Summer the Case of National Central University Main Library)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 由於都市化造成不透水鋪面的增加及減少自然土地並且減少反射率,增加了熱能
儲存及能源使用,而造成都市熱島效應。鋪面為都市熱島效應最顯著的影響,減緩熱島效應建議可使用涼鋪面及自然植物來達到環境涼化及節省能源。本研究的目的針對不同類型的透水性鋪面及不同的面積鋪設於建築物周圍,利用空氣和牆面溫度,計算建築物的能源使用,並與傳統的鋪路材料模擬結果進行成本比較。
本研究實驗區位於新北市新店區,量測參數包含四種材料(密級配瀝青混凝土
DGAC,透水瀝青混凝土PAC,植草磚GB 及透水連鎖磚PICB)表面溫度與氣象資料,並利用統計分析找出變數之間的相關性;本研究模擬案以國立中央大學圖書館為例,以Design Builder 程式模擬鋪面溫度,並將結果進一步以Design Builder Energy Plus 模擬建築能源使用並計算計算其成本。
研究結果顯示密級配瀝青混凝土表面溫度為最高,其影響室內和室外溫度,也增
加冷卻能源的使用。分析結果顯示使用透水性鋪面使用PAC 每年約可減少能源0.17%、GB 約可減少0.735%,而植被每年約可減少0.944%-1.132%。雖然透水性鋪面鋪設成本高於DGAC(PAC 53.2%,GB 86.4%,PI 46.4%),但能源使用之成本較低,與密級配瀝青混凝土總成本差異約可節省PAC 為2.319%、GB 為3.490%及PI 為1.700%。摘要(英) The urbanization process increases artificial surfaces and less natural vegetation,decreases the albedo, increases metabolic heat and energy consumption, resulting in heat
island effect. Pavements are found to be a significant contributor to the Urban Heat Island.
Cool pavements and vegetation are suggested as a strategy to mitigate heat island effect bycooling the environment and saving energy. The purpose of this study is to discover the effect of different types of permeable pavement and different pavement area covering the building on air and wall temperature, building‘s cooling energy consumption, and the costs comparison of permeable pavements with conventional paving materials.
Four types of pavement (dense grade asphalt pavement/DGAC, permeable asphalt pavement/PAC, concrete, grass block/ GB, and permeable interlocking concrete block/PICB)from Xindian are used in simulation. Xindian site measurement is conducted to collect meteorological and pavement surface temperature data. Statistical analysis is used to find the
correlation between variables and to develop the pavement surface temperature model applied on National Central University (NCU) main library as the case study for the simulations using Computational Fluid Dynamics (CFD) simulation package in DesignBuilder. The result is
further used in the building energy consumption simulations using EnergyPlus in DesignBuilder, and then used to calculate the cost.
The result shows DGAC gives the highest temperature and impact on the outdoor and indoor temperature, and also increases cooling energy consumption. Analysis results showed differences caused by using permeable pavements or by increasing vegetation area. Utilizing permeable pavement can decrease energy consumption 0.170% (PAC) until 0.735% (GB) per year. And vegetation also can decrease 0.944%-1.132% per year. Even permeable installation cost is higher than DGAC (PAC 53.2%, GB 86.4%, PI 46.4%), energy efficiency cost make it cheaper. The total cost differences with DGAC is just 2.319% for PAC, 3.490% for GB, and 1.700% for PI.關鍵字(中) ★ 透水性鋪面
★ 氣溫
★ 能源使用
★ DesignBuilder
★ 成本關鍵字(英) ★ Permeable pavement
★ air temperature
★ energy consumption
★ DesignBuilder
★ cost論文目次 ABSTRACT i
CHINESE ABSTRACT………………………………………………………………………………………ii
ACKNOWLEDGEMENTS iii
List of Figure vii
List of Table ix
List of Equation xi
CHAPTER 1 1
INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
1.3 Research Scope 2
1.4 Research Flowchart 4
CHAPTER 2 5
LITERATURE REVIEW 5
2.1 Heat Island 5
2.1.1 Types of Heat Island 5
2.1.2 Causes of Heat Island 6
2.2 Green Building 7
2.3 Comfort Index 10
2.4 Cool Pavement 12
2.4.1 Porous Pavement and Permeable Pavement 13
2.4.2 Permeable Pavement Types 14
2.5 Relationship between Permeable Pavement and Heat Island 15
2.6 Relationship between Vegetation and Heat Island 15
2.7 Building Energy Consumption 16
2.8 Computational Fluid Dynamics (CFD) 17
2.9 EnergyPlus Simulation 17
2.10 Cost 17
CHAPTER 3 19
RESEARCH METHOD 19
3.1 Equipment 19
3.2 Site measurement 23
3.3 Data analysis method 23
3.3.1 Google Earth Imagery 23
3.3.2 Meteorological data 23
3.3.3 Clustering 24
3.3.4 Statistical method 24
3.3.5 National Central University Main Library Building as Case Study 25
3.3.6 CFD Simulation 28
3.3.7 EnergyPlus Simulation for Building Energy Consumption 29
3.3.8 Cost Calculation 29
CHAPTER 4 30
ANALYSIS RESULT & DISCUSSION 30
4.1 Site Measurement Data Analysis 30
4.1.1 Site Measurement Location Analysis 30
4.1.2 Correlation Analysis for Permeable Pavement Experiment Area 32
4.1.3 Data Regression Analysis for Permeable Pavement Experimental Area 36
4.2 Effect of Permeable Pavement Surface Temperature on Wall Temperature 41
4.2.1 National Central University’s Data Correlation Coefficient 41
4.2.2 Effect of Pavement Surface Temperature on Outdoor Wall Temperature 42
4.2.3 Effect of Pavement Surface Temperature on Indoor Temperature 45
4.2.4 Effect of Pavement Surface Temperature and Roof Temperature on Outdoor Wall Temperature 47
4.2.5 Effect of Pavement Surface Temperature and Roof Temperature on Indoor Wall Temperature 49
4.2.6 Vegetation on Wall Temperature for the Different Pavement Covered Area 51
4.3 Thermal Comfort 53
4.4 Effect of Permeable Pavement and Vegetation to the Energy Consumption 61
4.4.1 Effect of Air Temperature to the Energy Consumption 61
4.4.2. Effect of Permeable Pavement and Vegetation to the Energy Consumption for Different Floor 63
4.5 Cost Analysis 65
4.5.1 Energy Consumption Cost 66
4.5.2 Traditional Pavement Cost 66
4.5.3 Permeable Pavement Cost 67
CHAPTER 5 68
CONCLUSION AND RECOMMENDATION 68
5.1 Conclusion 68
5.2 Recommendation for Future Research 70
BIBLIOGRAPHY 71
APPENDIX I DESIGN BUILDER SETTINGS AND RESULTS 74
APPENDIX II COST ANALYSIS 110參考文獻 [1] B. K. Ferguson, “Porous Pavements,” dalam Porous Pavements, United States of America, CRC Press, 2005.
[2] EPA, "EPA United States Environmental Protection Agency," 2012. [Online]. Available: http://www.epa.gov/hiri/. [Accessed 2012].
[3] C.-Y. Lin, “Urbanheatisland effect and its impact on boundary layer development and land–sea circulation over northern Taiwan,” ScienceDirect, vol. 42, no. 22, p. 5635–5649, 2008.
[4] A. J. B. Gordon M. Heisler, “The Urban Physical Environment: Temperature and Urban Heat Islands,” crop science, Vol. %1 dari %2978-0-89118-181-1, pp. 29-56, 2010.
[5] J. A. Voogt, “ Hotter Cities,” Urban Heat Islands, 2004.
[6] L. Gartland, “Heat Island: Understanding and Mitigating Heat in Urban Areas.,” Earthscan, UK, 2008.
[7] T. Oke, “ The Distinction between Canopy and Boundary-Layer Urban Heat Islands,” Atmosphere, vol. 14, p. 268–277, 1976.
[8] L. Kleerekoper dan M. v. Esch, “How to make a city climate-proof, addressing the urban heat island effect,” ScienceDirect, vol. 64, p. 30–38, 2012.
[9] R. Turk, “The Future of Green Building,” January 2010.
[10] i. c. t. liong, “preview of green building index Malaysia,” kulala lumpur, 2009.
[11] C. Nielson, “Green Building Guide,” dalam Rural Community Assistance Corporation, california, 2009.
[12] Architecture and Building Research Institute, , “Green Building Label,” Ministry of The Interior Taiwan, 2011. [Online]. Available: http://green.abri.gov.tw/art_1-2-en.php. [Diakses 23 November 2012].
[13] B. P. Taiwan, “Energy efficiency building standards in Taiwan”.
[14] A. K. a. M. S. Athienitis, Thermal Analysis and Design of Passive Solar Buildings, London: Science Publisher, 2002.
[15] Tianyu Xi, “Study on the outdoor thermal environment and thermal comfort around campus,” vol. 52, no. Building and Environtment, 2012.
[16] J.-T. Lee, “Study of Indoor Temperature and Comfort Index Effect by Air conditioning System,” 2012.
[17] Perrin Quarles Associates, “Reducing Urban Heat Islands: Compendium of Strategies,” p. 21, 2005.
[18] PAP, “porous pavements,” 2008.
[19] J.-D. Lin, “Study on the Design Guideline and Regulation of Rainwater Conservation and Infiltration Techniques at Building Site, Sub-project II: The Performance and Experimental Analysis of Porous Pavements,” 2003.
[20] M. Scholz dan P. Grabowiecki, “Review of permeable pavement systems,” vol. 42, 2007.
[21] Q. Government, “Dense Graded and Open Graded Asphalt,” dalam Dense Graded and Open Graded Asphalt Technical Standard, Queensland, Queensland Government, 2009.
[22] D. Ronca, “How Green Pavement Works,” HowStuffWorks, Inc, 1998-2013. [Online]. Available: http://science.howstuffworks.com/. [Diakses 1 May 2013].
[23] M. Carlowicz, “Ecosystem, Vegetation Affect Intensity of Urban Heat Island Effect,” Earth Science News Team Nasa, 15 December 2009 . [Online]. Available: http://www.nasa.gov/. [Diakses 1 May 2013].
[24] L. Pérez-Lombarda, J. Ortizb dan C. Pout, “A review on buildingsenergyconsumption information,” vol. 40, no. 3, 2007.
[25] WBCSD, “Energy Efficiency in Buildings,” World Business Council for Sustainable Development, Switzerland, 2005.
[26] M. Zhun Yu, “A systematic procedure to study the influence of occupant behavior on building energy consumption,” vol. 43, no. 6, 2011.
[27] H. MICHAEL J. SCOTT, “Effects of Climate Change on Commercial Building Energy Demand,” vol. 16, no. 3, 2007.
[28] K. Ruey-Lung Hwang, “Field experiments on thermal comfort in campus classrooms in Taiwan,” vol. 38, no. Enenrgy and Building, 2005.
[29] K. Riyanto, “Kajian Simulasi Bebean Thermal dan Analisis Energy Pada Rancangan Gedung Manufacturing Centra Research FT-UI dengan Sistem Tata Udara Variabel Air Volume Menggunakan EnergyPlus,” UI, Jakarta, 2011.
[30] “Wikipedia free ensiklopedi,” Wikimedia Foundation.inc, 30 5 2013. [Online]. Available: http://en.wikipedia.org/wiki/Energy_in_Taiwan. [Diakses 31 5 2013].
[31] C.-D. Yue dan S.-S. Wang, “GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan,” vol. 34, no. 6, 2006.
[32] “Design Builder,” DesignBuilder Software Ltd, 2005. [Online]. Available: http://www.designbuilder.co.uk/content/view/43/64/. [Diakses 9 06 2013].
[33] R. E. Schuler, “The economic impacts of a divisible-load permit system for heavy vehicles,” vol. 32, no. 2, 1998.
[34] S. Dikshit, “A Practical Guide to Cool Roofs and Cool Pavements,” 2011.
[35] P. David M. Pratt, “Three Types of Porous Pavements to Consider for LEED Buildings,” Expert Achieve Green Building, 2012. [Online]. Available: http://www.green-buildings.com/content/781799-porous-pavement-and-leed. [Diakses 14 March 2013].
[36] A. Citraningrum, “The Impact of Permeable Pavement Utilization on Air Temperature above the Pavement and Building Energy Consumption,” vol. 099, 2011.
[37] campbell scientific.inc, “campbell scientific,” campbell scientific.inc, 2013. [Online]. Available: http://www.campbellsci.com/cr10x. [Diakses 20 05 2013].
[38] R. L. Jan L.M Hensen, Building Performance Simulation for Design and Operation, New York: Spon Press, 2011.
[39] M. Kehrer, “Radiation Effects On Exterior Surfaces,” Institut Baupysik, 2008.
[40] P. S. Claire, “The Climates of Tall Building: An Investigation of Buildings Height in Bio-Climatic Design,” 24 February 2010. [Online]. Available: http://www.peterstclair.com/pdf/The-Climate-of-Tall-Buildings-Science-Review_LR.pdf. [Diakses 19 May 2013].
[41] “Taipeipower communication propaganda,” APIC (Asia PAcific Institute of Creativity), 2012. [Online]. Available: http://www.t-power.tw/ppt/TP%20PPT.pdf. [Diakses 30 5 2013].
[42] NASA, “NASA infrared processing analysis center,” [Online]. Available: http://coolcosmos.ipac.caltech.edu/cosmic_classroom/light_lessons/thermal/heat.html.
[43] M. Shahin, “Pavement M&R Budget Optimization Using The,” U.S. Army Engineer Waterways Experiment Stption, Texas, 1985.
[44] “Permeable Pavement Fact Sheet,” Information for Howard County, Maryland, 2007.指導教授 林志棟(Jyh-Dong Lin) 審核日期 2013-7-25 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare