博碩士論文 101322078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:219 、訪客IP:3.15.221.10
姓名 顏柔矞(Jou-yu Yen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 多重航照影像之線段匹配於房屋模型重建
(Line Matching from Multiple Aerial Images for Building Reconstruction)
相關論文
★ 中華二號衛星影像幾何模擬及方位重建★ 立體航測影像直線與圓弧輪廓建物半自動之三維模型重建
★ 含房屋之中華二號衛星影像幾何模擬及校正★ 空照立體像對中半自動化矩形人工建物重建之研究
★ 近景數化影像半自動式混凝土裂縫量測★ 建築物幾何模塑及其於航照影像正射化之應用
★ EROS A 衛星影像幾何改正之研究★ IKONOS衛星影像正射改正之研究
★ 時間序列之混凝土影像半自動裂縫變遷偵測★ 由EROS A衛星立體對影像產生正射影像及數值地表模型之研究
★ 多重疊航照立體對半自動房屋模型重建★ 結合光達資料與數位空照影像重建三維建物模型
★ 高解析力衛星影像真實正射改正及遮蔽區域補償★ 多航帶推掃式衛星方位平差及影像正射化
★ 結合光達資料與大比例尺向量圖重建三維建物模型★ 空載三線式掃描儀影像立體定位之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,三維資料被廣泛地發展及應用於空間資訊領域。建立三維空間資訊系統的元件有房屋、道路、公共設施、植物等,其中又以房屋模型的重建為最外顯者。重建房屋模型常使用的資料來源之一為航照影像。在多數的房屋樣式中,其邊界處常具有直線特徵結構,因此線段匹配對於房屋模型的重建尤為重要。本研究將藉由高重疊率的航照影像,配合影像線特徵的匹配進行房屋模型之重建。
本研究將模型重建分為兩個部分:(1)房屋輪廓重建以及(2)屋頂結構重建。若先建立出房屋的明確輪廓,則後續處理僅需針對屋頂上之附屬結構物,可降低非目標建物的特徵線所造成的影響。此兩部分在基本的處理程序上相似但參數設定上各有考量。首先,使用特徵萃取獲得影像上的直線特徵。接著,利用線段匹配搭配雙視窗的策略找出影像間的共軛線段。於三維線段定位中,線段的前方交會配合錯誤偵測以剔除不可靠的線段,提升交會之品質。最後則以迭代步驟精化初始模型。
在房屋輪廓重建時,因處理對象包含非目標房屋的部分,因此需配合興趣線段的選取,剔除非目標房屋之特徵線段。在屋頂結構重建時,其處理之範圍係經由房屋輪廓模型反投影所產生工作區域,區域內的所有線段都可能為重建之目標線段,因此不需額外選取興趣線段。當屋頂結構之三維線段定位完成後,與已建立的房屋輪廓模型整合進行初始模型建立及模型精化,產生最終三維房屋模型。
由實驗成果顯示,多張影像的線段匹配能有效提升匹配成功率及正確率。配合錯誤偵測對於三維線段之定位及後續模型之重建品質有顯著的改善。房屋模型之平面誤差約為0.1m,高程則為0.5m左右。
摘要(英) Nowadays, three dimensional data has been widely used in the field of geospatial information. To reconstruct 3D GIS, major components include buildings, roads, utilities, vegetation, etc. Among those components, building models are the most prominent in the reconstruction work. Aerial images are commonly used in building reconstruction. In most of man-made scenes, line segment features usually exist along boundaries. Thus, line matching plays an important role in the building reconstruction. The building reconstruction with line matching algorithm is performed using high overlapping aerial images in this study.
The proposed method includes (1) boundary determination and (2) roof structure reconstruction. If the building boundaries can be determined, then the roof structures can thus be processed and the interference of non-target objects can also be reduced. The basic procedures in those two parts are similar with the differences of parameter settings. First, feature extraction is to extract the straight lines, and then use line matching with the strategy of left-right windows to locate the conjugate lines in multiple images. In the 3D line positioning, space line intersection with the blunder detection are combined to derive quality results. The reconstruction and refinement processes are done in an iterative way.
In the boundary determination, for the reason that area of interest includes non-target objects, the interest line selection is needed for the estimation of their features. In the roof structure reconstruction, the areas of interest are produced by the back-project of the building boundaries. All of the extracted lines are selected in this stage to avoid line missing. After the 3D line positioning of the roof structure, the boundary model and roof structure are integrated with the initial model reconstruction and refinement to generate the 3D building model.
The experimental results indicate that multi-angle images can improve the matching successful rate. With the blunder detection, unreliable matched line segment can be eliminated effectively. The RMSE of the test models can reach 0.1m in X and Y direction, and 0.5m in Z direction.
關鍵字(中) ★ 多重航照影像
★ 雙視窗匹配法
★ 線段前方交會
★ 錯誤偵測
★ 房屋模型重建
關鍵字(英) ★ Multiple aerial images
★ Left-right matching
★ Space line intersection
★ Blunder detection
★ Building model reconstruction
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XIII
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究方法及內容 7
第二章 研究方法 9
2.1 資料前處理 11
2.2 房屋輪廓重建 12
2.3 屋頂結構重建 30
第三章 研究成果與分析 32
3.1 實驗資料 32
3.2 測試例資料 40
3.3 參考資料 45
3.4 實驗成果與分析 48
3.5 實驗總結 93
第四章 結論與建議 94
參考文獻 96
參考文獻 王聖鐸,2005,「以浮測模型理論萃取三維空間資訊-以建物重建為例」,博士論文,國立成功大學測量及空間資訊學系。
徐偉城,1999,「空照彩色立體像對中人工建築物萃取之研究」,碩士論文,國立中央大學土木工程學系。
Ayache, N., and Faugeras, O. D., 1989. Maintaining representations of the environment of a mobile robot, IEEE transactions on robotics and automation, 5(6), pp. 804-819.
Baillard, C., and Zisserman, A., 2000. A plane sweep strategy for the 3D reconstruction of buildings from multiple images, International Archives of Photogrammetry and Remote Sensing, Vol. 33, Part B3, pp. 56-62.
Canny, J., 1986. A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, pp. 679-698.
Chen, L. C., Lee, L. H., 1992. Progressive Generation of Control Frameworks for Image Registration, Photogrammetric Engineering & Remote Sensing, Vol. 58, No. 9, pp. 1321-1328.
Cheng, L., Tong, L., Chen, Y., Zhang, W., Shan, J., Liu, Y., Li, M., 2013. Integration of LiDAR data and optical multi-view images for 3D reconstruction of building roofs, Optics and Lasers in Engineering, Vol. 51, pp. 493-502.

Faig, W., and Widmer, T., 2000. Automatic building extraction from aerial images, Proc.Of IAPRS, Vol. 33, B7, pp. 1708-1715, Amsterdam, Netherlands.
Ghilani, C. D., 2010. Adjustment computations: spatial data analysis/Charles D. Ghilani. – 5th ed. pp. 440-441.
Hough, P. V. C., 1959. Machine Analysis of Bubble Chamber Pictures. Proc. Int. Conf. High Energy Accelerators and Instrumentation.
Henricsson, O., 1998. The Role of Color Attributes and Similarity Grouping in 3-D Building Reconstruction. Computer Vision and ImageUnderstanding, 72(2), pp. 163-184.
Halla, N., and Brenner, C., 1998. Interpretation of Urban Surface Models Using 2D Building information, Computer Vision and Image Understanding, Vol. 72, No. 2, pp. 204-214.
Habib, A., Kwak, E., Al-Durgham, M., 2011. Model-based Automatic 3D Building Model Generation by Integrating LiDAR and Aerial Images, Archives of Photogrammetry, Cartography and Remote Sensing, Vol. 22, pp. 187-200.
Noronha, S., and Nevatia, R., 2001. Detection and modeling of buildings from multiple aerial images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 5, pp. 501-518.
Ok, A. O., Wegner, J. D., Heipke, C., Rottensteiner, F., Soergel, U., Toprak, V., 2010. A new straight line reconstruction methodology from multi-spectral stereo aerial images. Saint-Mandé, France, September 1-3, 2010, IAPRS, Vol. XXXVIII, Part 3A.

Ok, A. O., Wegner, J. D., Heipke, C., Rottensteiner, F., Soergel, U., Toprak, V., 2010. A stereo line matching technique for aerial images based on a pair-wise relation approach. ISPRS Istanbul Workshop 2010 on Modeling of optical airborne and spaceborne Sensors, WG I/4, Oct. 11-13, IAPRS Vol. XXXVIII, part 1/W4.
Park, S., Lee, K., Lee, S., 2000. A Line Feature Matching Technique Based on an Eigenvector Approach, Computer Vision and Image Understanding, 77, pp. 263-283.
Rottensteiner, F., and Briese, C., 2003. Automatic Generation of Building Models from LiDAR Data and the Integration of Aerial Images, International Archives of Photogrammetry and Remote Sensing, Vol. 34, Part3/W13, pp. 298-303.
Rau, J. Y., and Chen, L. C., 2003. Robust Reconstruction of Building Models from Three-Dimensional Line Segments, Photogrammetric Engineering and Remote Sensing, Vol. 69, No. 2, pp. 181-188. (SCI, EI)
Schmid, C., and Zisserman, A., 1997. Automatic Line Matching Across Views. In: Proceedings of CVPR, pp. 666–671.
Scholze, S., Moons, T., Ade, F., Van Gool, L., 2000. Exploiting Color for Edge Extraction and Line Segment Stereo Matching. In: IAPRS, pp. 815–822.
Suveg, I., and Vosselman, G., 2004. Reconstruction of 3D Building Models from Aerial Images and Maps, ISPRS Journal of Photogrammetry and Remote Sensing, 58, pp. 202-224.
Taillendier, F., and Deriche, R., 2004. Automatic building reconstruction from aerial images: a generic Bayesian framework, International Archives of Photogrammetry and Remote Sensing, Vol.35, part B3, pp.343-348.
Teo, T., and Chen, L., 2010. The registration of 3-D models and a 2-D image using point and line features, ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A.
Xiong, X., Adan, A., Akinci, B., Huber, D., 2013. Automatic creation of semantically rich 3D building models from laser scanner data, Automation in Construction, Vol. 31, pp. 325-337.
Yang, L., Wang, R., Ge, P., Cao, F., 2009. Research on Area-Matching Algorithm Based on Feature-Matching Constraints, 2009 Fifth International Conference on Natural Computation, Vol. 5, pp. 208-213.
Zhang, C., and Baltsavias, E. P., 2000. Edge matching and 3D road reconstruction using knowledge-based methods, Schriftenreihe der Fachrichtung Geodaesie, Darmstadt, Germany, 10, pp. 251-265.
指導教授 陳良健(Liang-chien Chen) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明