博碩士論文 100322011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:226 、訪客IP:3.141.31.108
姓名 盧威廷(Lu Wei-Ting)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 耦合結構牆地震行為與性能化設計法
相關論文
★ 形狀記憶合金於抗震RC耦合牆系統之初步研究★ 綠色高韌性纖維混凝土(Green-ECC)本土化發展與自癒合能力之研究
★ 鋼絲網加勁高韌性纖維水泥基複合材料之力學行為研究★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 耦合結構牆受近斷層地震作用之行為
★ 高爐石高韌性纖維混凝土(ECC)之開發與自癒合研究★ 鋼筋混凝土柱受撓曲變形參數之研究
★ 有鋼筋截斷之RC梁耐震行為探討★ 預鑄施工梁與版間冷縫對T形斷面梁耐震行為之影響
★ 高韌性纖維混凝土耦合結構牆之數值模型★ 預力混凝土橋梁受洪水沖刷後之側推與逐漸倒塌之研究
★ 基礎裸露鋼筋混凝土橋梁之抗震行為與能力評估★ 高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之反覆載重行為
★ 高強度鋼筋混凝土連接梁反覆載重行為之研究★ 受腐蝕鋼筋混凝土構架之抗耐震性能評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 耦合結構牆(coupled walls)乃由兩個以上之結構牆(structural wall)藉由連接梁 (coupling beam)所連結而成一整體之結構物,在地震頻繁的區域,耦合結構牆常用以增加系統的側向勁度,現行規範之耦合結構牆設計方法乃基於強度設計法,本研究目標為克服現有設計規範之侷限,根據耦合結構牆之最佳降伏消能機制,定義出耦合結構牆於不同災害等級下之性能目標,並發展耦合結構牆的性能化設計法,使得耦合結構牆能充分發揮非彈性變形消能之能力,並於不同地震災害層級下,分別達成預設之性能目標。本論文主要分為三部分,首先使用現行規範所描述的設計方法設計數組耦合牆,以非線性靜力分析與非線性歷時分析方法調查耦合牆的行為,並探討耦合牆系統的降伏機制與性能表現,建議耦合牆完整的表現目標準則。第二部分則是基於上述分析結果,發展耦合牆系統的性能化塑性設計法(performance-based plastic design/PBPD),此方法以預先選定的耦合率為出發點進行設計,且允許設計者不需要建造彈性模型即可計算構件設計強度並直接進行斷面設計,研究結果顯示,使用本文發展的PBPD所設計之耦合牆系統,不僅能夠達到良好的降伏機制、亦能滿足不同表現目標下的性能表現容忍值。第三部分則是探討連接梁分段設計形式對於耦合牆地震行為與降伏機制的影響,結果發現,耦合結構牆之整體連接梁均採用相同的設計斷面的系統亦能展現相當良好的降伏機制與性能表現,因此,本文建議耦合牆系統中的連接梁,在設計時可採用相同的斷面設計。
摘要(英) Coupled walls are often used in mid- to high-rise structural systems to provide adequate lateral stiffness and strength to resist earthquakes. A coupled wall is composed by two or more structural walls connected by coupling beams. It has been shown that coupled walls are able to effectively reduce the drift response and overturning moment that a structure experiences during earthquakes. Under the action of an earthquake, coupling beams have to provide sufficient strength in order to transmit large forces between walls. In addition, coupling beams have to be designed with high ductility since they are expected to undergo large deformation reversals under earthquakes. In order to discuss the influence of different designs of coupling beams on the seismic behavior of coupled walls, the paper presented herein designs a series of coupled wall systems with different coupling ratios; coupling ratio is defined as a ratio of the additional moment resistance generated by coupling actions to the overall overturning moment. It is found that for coupled walls with low coupling ratios, their lateral stiffness will decrease substantially as soon as coupling beams yield. On the other hand, the coupled walls that are designed with high coupling ratios have several beneficial effects. For example, while the material used can be reduced, their stiffness is able to maintain at a relatively higher level as coupling beams start to yield. Nevertheless, detrimental effects are also found for coupled walls with high coupling ratios. Based on the analysis results, the paper suggests an appropriate range of coupling ratios for coupled walls with different heights.
關鍵字(中) ★ 耦合牆
★ 耦合率
★ 性能化設計
★ 非線性行為
關鍵字(英) ★ coupled wall
★ coupling ratio
★ performance-based design
★ nonlinear analysis
論文目次 摘要 I
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1. 研究動機 1
1.2. 研究目的 1
1.3. 研究方法與步驟 2
1.4. 論文架構 2
第二章 文獻回顧 4
2.1. 簡介 4
2.2. 設計原理 6
2.3. 耦合率(coupling ratio/CR) 6
2.4. 連接梁 9
2.5. 性能化設計法(Performance-based design) 10
第三章 耦合率對於耦合牆系統的影響 11
3.1. 耦合結構牆設計方法 11
3.1.1. 系統原型 11
3.1.2. 耐震參數 12
3.1.3. 等值側向力設計法 13
3.1.4. 系統設計 14
3.1.5. 連接梁設計 16
3.1.6. 結構牆設計 20
3.2. 非線性分析程序及資料擷取 44
3.2.1. 有限元素模型 44
3.2.2. 非線性分析 46
3.2.3. 資料擷取 48
3.3. 耦合結構牆的性能表現 55
3.3.1. 系統受力反應機制 55
3.3.2. 系統位移反應機制 68
3.4. 耦合結構牆的降伏機制 90
3.4.1. 耦合率 90
3.4.2. 降伏機制 93
3.4.3. 規範評估並建議設計參數 95
3.4.4. 結論 97
第四章 性能化塑性設計法 107
4.1. 耦合結構牆性能化塑性設計方法 107
4.1.1. 系統原型 107
4.1.2. 塑性設計 107
4.1.3. 構件設計強度 115
4.2. 性能化塑性設計法分析結果 141
4.2.1. 定義表現目標 141
4.2.2. 耦合率曲線 142
4.2.3. 結構牆旋轉角 143
4.2.4. 層間側移 145
4.2.5. 拉壓牆彎矩比例 145
4.2.6. 降伏機制及表現目標 146
4.2.7. 結論 147
第五章 連接梁分段形式對於耦合結構牆的影響 160
5.1. 文獻回顧 160
5.2. 系統設計 161
5.3. 連接梁分段形式 161
5.4. 分析結果 162
5.5. 結論 165
第六章 結論 178
參考文獻 181
附錄 A: 規範設計法 185
附錄 B: 性能化塑性設計法 240
參考文獻 ACI (American Concrete Institute) Committee 318. (2011). “ACI 318 Building code requirements for structural concrete (318-11).” ACI-318, Farmington Hills, Mich
American Institute of Steel Construction (AISC) (2010), Seismic Provisions for Structural Steel Buildings, Chicago, IL.
Chaallal O., Gauthier D., Malenfant P.. (1996), “Classification methodology for coupled shear walls.” Journal of Structural Engineering. Vol. 122, No. 12.
Chananan W. and Leelataviwat S. and Goel S. (2010). “Plastic design of hybrid coupled walls considering higher mode effects.” The 3rd ASIA Conference on Earthquake Engineering. ACEE-P-019. Bangkok, Thailand.
Chao S.-H. and Goel S.. (2005). “Performance-based seismic design of EBF using target drift and yield mechanism as performance criteria.” Report No. UMCEE 05-05. Department of Civil and Environmental Engineering. University of Michigan, Ann Arbor.
Chao S.-H., Goel S. and Lee S.S.. (2007). “A seismic design lateral force distribution based on inelastic state of structures.” Earthquake Spectra. Earthquake Engineering Research Institute. Vol. 23, No. 3. pp. 547-569.
Chao S.-H.,and Goel S... (2008). “Performance-based plastic design of special truss moment frames.” AISC Engineering Journal. pp. 127-150.
El-Tawil S., Kuenzli C. M., and Hassan M.. (2002a). ‘‘Pushover of hybrid coupled walls. Part I: Design and modeling.’’ ASCE, Journal of Structural Engineering. Vol. 128, No. 10, pp. 1272-1281.
El-Tawil S., Kuenzli C. M.. (2002b), “Pushover of Hybrid Coupled Walls. Part II: Analysis and Behavior.” ASCE, Journal of Structural Engineering, Vol. 128, No. 10, pp. 1282-1289.
El-Tawil, S., Harries, K. A., Fortney, P. J., Shahrooz, B. M., and Kurama, Y. (2010). “Seismic design of hybrid coupled wall systems – state-of-the-art.” Accepted for Publication, Journal of Structural Engineering.
FEMA-356. (2000). “NEHRP Guidelines for the Seismic Rehabilitation of Buildings.” FEMA-356, Applied Technology Council, Redwood City, California.
Goel S., Liao W.-C., Bayat M. and Chao S.-H.. (2010). “Performance-based plastic design (PBPD) method for earthquake-resistant structures: an overiew.” The Structural Design of Tall and Special Buildings
Harries K. , McNeice D.. (2006). “Performance-based design of high-rise coupled wall systems.” The Structural Design of Tall and Special Buildings. 15(3), 289-306.
Harries K. A., Mitchell, D., Cook, W. D., and Redwood, R. G.. (1993) ‘‘Seismic response of steel beams coupling concrete walls.’’ Journal of Structural Engineering, ASCE, 119(12), pp.3611-3629.
Harries K., Moulton J. and Clemson R.. (2004a), “Parametric Study of Coupled Wall Behavior – Implications for the Design of Coupling Beams,” ASCE Journal of Structural Engineering Vol. 130, No. 3 pp 480-488
Hassan M., and El-Tawil S. (2004). “ Inelastic dynamic behavior of hybrid coupled walls.” Journal of Structural Engineering, 130(2), 285-296.
Hassan M.. (2004). “Inelastic dynamic behavior and design of hybrid coupled wall systems.” PhD. Dissertation. University of Central Florida.
Lee S.-S., Goel S. and Chao S.-H.. (2004). “Performance-based seismic design of steel moment frames using target drift and yield mechanism.” Proceedings, 13th World Conference on Earthquake Engineering, Paper No. 266, Vancouver, B. C., Canada.
Leelataviwat S. and Goel S. and Stojadinovic. B.. (1999). “Toward performance-based seismic design of structures.” Earthquake Spectra. Vol. 15, No. 3, pp. 435-461.
Lequesne R. D., Wight J. K., and Parra-Montesinos G. J.. (2010) “High-performance fiber-reinforced concrete coupled-wall systems: design and behavior.” 14th ECEE.
Liao W.-C.. (2010). “Performance-based plastic design of earthquake resistant reinforced concrete moment frames.” PhD. Dissertation. University of Michigan, Ann Arbor.
Parra-Montesinos G. J., Canbolat B. A., and Jeyaraman G. R.. (2006) “Relaxation of confinement reinforcement requirements in structural walls through the use of fiber reinforced cement composites.” 8th National Conference on Earthquake Engineering.
Paulay T. and Goodsir W. J. (1985). “The ductility of structural walls.” Bulletin of the New Zealand Society for Earthquake Engineering. 18(3).
Paulay T., and Priestley M. J. N.. (1992), “Seismic design of reinforced concrete and masonry buildings.”,Wiley, New York: John Wiley & Sons, Inc.
Paulay T.. (2002). The displacement capacity of reinforced concrete coupled walls. Engineering Structures. 24:1165-1175.
Priestley M. J. N., Kowalsky M. J.. (1998). “Aspects of drift and ductility capacity of rectangular cantilever structural walls.” Bulletin of the New Zealand Society for Earthquake Engineering. 31(2):73-85.
Turgeon J.. (2011). “The seismic performance of coupled reinforced concrete walls.” MS. Dissertation.University of Washington.
指導教授 洪崇展(Hung Chung-Chan) 審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明