博碩士論文 100322095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:231 、訪客IP:3.133.126.46
姓名 吳翊安(Yi-An Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 各種載重作用下neo-Hookean材料微孔動態分析
相關論文
★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討★ 彈性材料圓孔非對稱變形近似解研究
★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算
★ 多微孔橡膠材料受拉變形平面應力分析★ 非線性彈性固體微孔變形特性
★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定
★ 牛頓型疊代法二次項效應★ GEH理論壓密量速算式
★ 擴散管流量解析解★ 宏觀收斂迭代法速度比較
★ 二次項效應混合型牛頓疊代法之研究★ 漸增載重之壓密速算公式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要      
當材料承受動力荷載時,會使材料中的孔洞產生震動,而微孔震動的情形,可能受外力強度、頻率、種類等因素的影響。
本篇論文延續前人對於材料受動態荷載作用下孔洞震動情形的研究成果。對各種不同種類的外力作用下微孔的振動進行探討,找尋不同種類外力作用下微孔震動型態的相似之處。除此之外,論文中也探討微孔的初始孔徑改變之下,頻譜圖是否跟著改變且有特定的趨勢。
摘要(英) Abstract
When a material is subjected to dynamic loads, the micro void in the material will vibrate.The vibration may be affected by the intensity, frequency and type of the external load and so on.
This thesis extends the previous research for the vibration of a cavity in a material which is subjected to dynamic loads. We study different types of micro-void vibrations which are induced by different external forces and look for the similarities between these vibrations. In addition, we also investigate whether the response spectrums change or not when the initial diameter of the micro- void changes.
關鍵字(中) ★ 微孔
★ 新虎克
★ 動態載重
關鍵字(英) ★ neo-Hookean
★ dynamic load
論文目次 目 錄
摘要       II
Abstract III
目 錄 IV
圖片目錄 VI
表格目錄 XI
符號表 I
第一章 導論 1
第二章 基礎理論 3
第三章 neo-Hookean圓球基本震動型態 8
第四章 各種載重作用下微孔的震動型態 11
4-1 Sine型態載重引起的震動 11
4-1-1 fq=1 11
4-1-2 Fq=2 16
4-2 teeth型態載重引起的震動 33
4-3 step型載重引起的震動 40
4-4 cosine型 和shiftstep型載重引起的震動 45
4-4-1 cosine型載重引起的震動 45
4-4-2 Shiftstep型載重引起的震動 49
第五章 各種不同種類的外力作用下頻譜圖的比較 54
5-1 外力p值相同時各種荷重頻譜 54
5-1-1 P=1 54
5-1-2 P=0.5 63
5-1-3 P=2 65
5-1-4 P=2.2 69
5-1-5 P=2.3 75
5-2 外力累積量I值相同 80
5-2-1 sine型外力作用下的頻譜 80
5-2-2 Teeth型外力作用下的頻譜 82
5-2-3 step型外力作用下的頻譜 83
5-2-4 cosine型外力作用下的頻譜 84
5-2-5 shiftstep型外力作用下的頻譜 85
第六章 微孔初始大小對共振的影響 87
6-1 sine型外力作用下的頻譜 87
6-1-1 p=2 87
6-1-2 P=1 89
6-2 teeth型外力作用下的頻譜 93
6-2-1 P=2 94
6-2-2 P=1 97
6-3 step型外力作用下的頻譜 99
6-3-1 p=1 99
6-4 cosine型外力作用下的頻譜 101
6-4-1 p=2.3 101
6-5 stepshift型外力作用下的頻譜 103
6-5-1 P=1 103
第七章 結論 106
參考文獻 108
參考文獻 參考文獻
[1] A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970.
[2] F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371.
[3] U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490.
[4] A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53.
[5] C.Fong, Cavitation criterion for rubber materials: a review of void-growth models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
[6] E. Bayraktar, et. al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatique Fract. Engrg. Mater. Struct., 31(2008)184-196.
[7] J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
[8] J. Sivaloganathan and S.J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J. of Elasticity, 67(2002)25-49.
[9] C.O.Horgan and D.A.Polignone, Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485.
[10] C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
[11] F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226
[12] S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914
[13] H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
[14] S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401.
[15] C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263.
[16] C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
[17] R. Cortes, Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses. Int. J. Solids Struct. 29(1992)1637-1645.
[18] M.S.Chou-Wang and C.O.Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci.,27(1989) 967-973.
[19] X. Yuan, Z.Zhu and R. Zhang, Cavity formation and singular periodic oscillations in isotropic incompressible hyperelastic materials. Int.J.Non-Linear Mech.,41(2006)294-303.
[20] X.G. Yuan and H.W.Zhang, Effects of constitutive parameters and dynamic tensile loads on radially periodic oscillation of micro-void centered at incompressible hyperelastic spheres. CMES,40(2009)201-224.
[21] X. Yuan, Z. Zhu. and C. Cheng, Qualitative analysis of dynamical behavior for an incompressible neo-Hookean spherical shell. Appl. Math. Mech. (English Edition), 26(2005)973-981.
[22] Dynamical Growth of Void in a Neo-Hookean Sphere under a periodic load
[23] Under periodic loead and dead load the Dynamical behavior of micro void in a Neo-Hookean Sphere
[24] Period load under the dynamic analysis of the neo-Hookean sphere micro-void
指導教授 李顯智(Hin-chi Lei) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明