博碩士論文 100322019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:213 、訪客IP:3.139.86.160
姓名 李苡珊(E-Shan Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 劉氏保群算法於高雷諾數Burgers方程之應用及探討
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 彈性材料圓孔非對稱變形近似解研究
★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算
★ 多微孔橡膠材料受拉變形平面應力分析★ 非線性彈性固體微孔變形特性
★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定
★ 牛頓型疊代法二次項效應★ GEH理論壓密量速算式
★ 擴散管流量解析解★ 宏觀收斂迭代法速度比較
★ 二次項效應混合型牛頓疊代法之研究★ 漸增載重之壓密速算公式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文探討劉氏於2006年發表關於計算高雷諾數之保存群性質數值方法[30]。此篇文章在探討高雷諾數數值解部分採用雙曲線函數座標轉換,本文則採用指數函數座標轉換與之對比,另外,也用傳統數值方法RK4與劉氏GPS(LGPS)計算出之數值結果做一詳細之比較。此外,我們也考慮網格點數量之多寡對RK4與LGPS之影響,最後,我們嘗試使用牛頓插值公式找出R-A關係式,如此,雷諾數值一旦改變即可不必重新尋找A值了。
摘要(英) This article explores Professor Liu C.S. published in 2006 on the calculation of the preservation group nature of high Reynolds number numerical methods [30]. This article to explore the numerical solution of partial high Reynolds coordinate transformation using hyperbolic functions, exponential functions are used herein coordinate transformations contrast. In addition, the traditional numerical methods RK4 and Liu GPS (LGPS) calculated the numerical results do a detailed comparison. Moreover, we also consider the number of grid points of the amount of the impact on RK4 and LGPS. Finally, we try to use Newton’s interpolation formula to identify RA relationships, so, once the Reynolds number can be changed without re looking for A worth it.
關鍵字(中) ★ 劉氏保群算法 關鍵字(英) ★ Burgers 方程
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XIII
符號表 XIV
第一章 緒論 1
第二章 Burgers 方程之簡介 3
第三章 差分公式
3.1 空間軸上的離散 6
3.2 Fourth-Order Runge-Kutta Method , RK4 11
3.3 Group Preserving Scheme , GPS 13
第四章 計算範例
4.1 網格轉換後公式之替換 19
4.1.1 雙曲線函數座標轉換之應用 21
4.1.2 指數函數座標轉換之應用 44
4.2 網格數目的增減 53
4.2.1 RK4與GPS測試雙曲線x-y轉換函數功效 53
4.2.2 RK4與GPS測試指數x-y轉換函數功效 62
4.3 R與A關係的數學公式
4.3.1 RK4與GPS計算雙曲線函數 71
4.3.2 RK4與GPS計算指數函數 78
第五章 結論 82
第六章 參考文獻 83
參考文獻 1. Hairer E, Lubich C and Wanner G 2002 Geometric numerical integration (Springer Series in Computational Mathematics vol 31) (Berlin: Springer)
2. McLachlan R I, Quispel G R W and Robidoux N 1999 Geometric integration using discrete gradients Phil. Trans. R. Soc. A 357 1021-45
3. Quispel G R W and McLachlan R I (eds) 2006 Special issue on geometric numerical integration of differential equations J. Phys. A: Math. Gen. 39 5251-651
4. Tse P S P 2007 Geometric Numerical Integration Ph.D. Thesis La Trobe University
5. M. J. Ablowitz, B. M. Herbst, and C. Schober, On the numerical solution of the sine-Gordon equation. I. Integrable discretizations and homoclinic manifolds, J. Comput. Phys. 126 (1996), pp.299-314.
6. P. J. Channell and C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (1990),pp.231-259.
7. Kang Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comp. Math. 4 (1986), pp.279-289
8. V. Grimm and R. Scherer, A generalized W-transformation for constructing symplectic partitioned Runge-Kutta methods, BIT, 43(1) (2003), pp. 57-66(10).
9. R. A. Labudde and D. Greenspan, Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Part I, Num. Math. 25 (1976), pp.323-346.
10. D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlin. Sci. 4 (1994), pp.253-299.
11. A. Marciniak, Energy conserving, arbitrary order numerical solutions of the N-body problem, Num. Math. 45 (1984), pp. 207-218.
12. J. C. Simo and N. Tarnow, The discrete energy-momentum method. Conserving algorithms for non- linear elastodynamics, Z. Ang. Math. Phys. 43 (1992), pp.757-792.
13. J. C. Simo, N. Tarnow, and K. Wong, Exact energy-momentum conserving algorithms and sym-plecticschemes for nonlinear dynamics, Comp. Meth. Appl. Mech Eng. 100 (1992), pp.63-116.
14. C. J. Budd, and C. B. Collins, Symmetry Based Numerical Methods for Partial Differential equations, textitNumerical analysis, D. F. Gri±ths, D.J. Higham and G.A. Watson, eds., Pitman Res. Notes Math., vol. 380, Longman, Harlow, 1998, pp. 16-36.
15. C. J. Budd and V. A. Dorodnitsyn, Symmetry Adapted Moving Mesh Schemes for the Nonlinear Schrodinger equation, J. Phys. A, Math. Gen., 34 (48) (2001), pp. 10387-10400.
16. V. A. Dorodnitsyn, Finite Di®erence Models Entirely Inheriting Continuous Symmetry of Original Differential equations, Int. J. Mod. Phys., C 5 (1994), pp. 723-724.
17. P. Kim and P. J. Olver, Geometric Integration via Multispace, Regular and Chaotic Dynamics, 2004,9(3), pp.213-226.
18. P. Kim, Invariantization of Numerical Schemes Using Moving Frames, Ph.D. Thesis, University of Minnesota, Minneapolis, 2006.
19. R. I. McLachlan, G. R. W. Quispel and G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries, SIAM J. Numer. Anal., 35 (1998), pp. 586-599.
20. F. Valiquette, Discretizations Preserving All Lie Point Symmetries of the Korteweg-de Vries equation, Proceedings Volume of the XXV International Colloquium on Group Theoretical Methods in Physics (2005), pp. 539-544
21. N.N. Janenko and Ju. I. sokin, On a group classification of difference schemes for the system of one-dimensional equations of gas dynamics, Proc. Steklov. Insto. Math,. Vol.122 (1973) 87-99
22. N.N. Janenko and Ju. I. sokin, Group classification of difference schemes for a system of one-dimensional equations of gas dynamics, Amer, Math. Soc. Transl., Vol.104(2), 1976, 259-265
23. Ju. I. Sokin, The method of differential approximation, Springer-Verlag, New York, 1983
24. A.S. Dawes, Invariant numerical methods, Int. J. for number. Methods on Fluids, vol.56, 2008, 1185-1191
25. Liu, Chein-Shan. (2001). Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics, 36(7), 1047-1068
26. Liu, C. (2006a). Preserving constraints of differential equations by numerical methods based on integrating factors. Computer Modeling In Engineering And Sciences, 12(2), 83.
27. Liu, C. (2005). Nonstandard group-preserving schemes for very stiff ordinary differential equations. Computer Modeling in Engineering and Sciences, 9(3), pp.255-272
28. Liu, C. (2006b). An efficient backward group preserving scheme for the backward in time Burgers equation. Computer Modeling in Engineering and Sciences, 12(1), 55.
29. Liu, C, Chang, C, & Chang, J. (2006). Past cone dynamics and backward group preserving schemes for backward heat conduction problems. Computer Modeling In Engineering and Sciences,12(1),67.
30. Liu, C.-S.(2006). A group preserving scheme for Burgers equation with very large Reynolds number. CMES, vol.12(3), 2006, 197-211
31. Chein-Shan Liu*:Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics 36 (2001) 1047}1068.
32. 國家教育研究院-雙語詞彙、學術名詞暨辭書資訊網,2002年12月力學名詞辭典,楊德良著:http://terms.naer.edu.tw/detail/1325963/
33. 工程數學(上)(第二版),Dennis G. Zill & Michael R. Cullen 著,茆政吉 譯,P339。
指導教授 李顯智(Hin-Chi Lei) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明