參考文獻 |
1. Hairer E, Lubich C and Wanner G 2002 Geometric numerical integration (Springer Series in Computational Mathematics vol 31) (Berlin: Springer)
2. McLachlan R I, Quispel G R W and Robidoux N 1999 Geometric integration using discrete gradients Phil. Trans. R. Soc. A 357 1021-45
3. Quispel G R W and McLachlan R I (eds) 2006 Special issue on geometric numerical integration of differential equations J. Phys. A: Math. Gen. 39 5251-651
4. Tse P S P 2007 Geometric Numerical Integration Ph.D. Thesis La Trobe University
5. M. J. Ablowitz, B. M. Herbst, and C. Schober, On the numerical solution of the sine-Gordon equation. I. Integrable discretizations and homoclinic manifolds, J. Comput. Phys. 126 (1996), pp.299-314.
6. P. J. Channell and C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3 (1990),pp.231-259.
7. Kang Feng, Difference schemes for Hamiltonian formalism and symplectic geometry, J. Comp. Math. 4 (1986), pp.279-289
8. V. Grimm and R. Scherer, A generalized W-transformation for constructing symplectic partitioned Runge-Kutta methods, BIT, 43(1) (2003), pp. 57-66(10).
9. R. A. Labudde and D. Greenspan, Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Part I, Num. Math. 25 (1976), pp.323-346.
10. D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlin. Sci. 4 (1994), pp.253-299.
11. A. Marciniak, Energy conserving, arbitrary order numerical solutions of the N-body problem, Num. Math. 45 (1984), pp. 207-218.
12. J. C. Simo and N. Tarnow, The discrete energy-momentum method. Conserving algorithms for non- linear elastodynamics, Z. Ang. Math. Phys. 43 (1992), pp.757-792.
13. J. C. Simo, N. Tarnow, and K. Wong, Exact energy-momentum conserving algorithms and sym-plecticschemes for nonlinear dynamics, Comp. Meth. Appl. Mech Eng. 100 (1992), pp.63-116.
14. C. J. Budd, and C. B. Collins, Symmetry Based Numerical Methods for Partial Differential equations, textitNumerical analysis, D. F. Gri±ths, D.J. Higham and G.A. Watson, eds., Pitman Res. Notes Math., vol. 380, Longman, Harlow, 1998, pp. 16-36.
15. C. J. Budd and V. A. Dorodnitsyn, Symmetry Adapted Moving Mesh Schemes for the Nonlinear Schrodinger equation, J. Phys. A, Math. Gen., 34 (48) (2001), pp. 10387-10400.
16. V. A. Dorodnitsyn, Finite Di®erence Models Entirely Inheriting Continuous Symmetry of Original Differential equations, Int. J. Mod. Phys., C 5 (1994), pp. 723-724.
17. P. Kim and P. J. Olver, Geometric Integration via Multispace, Regular and Chaotic Dynamics, 2004,9(3), pp.213-226.
18. P. Kim, Invariantization of Numerical Schemes Using Moving Frames, Ph.D. Thesis, University of Minnesota, Minneapolis, 2006.
19. R. I. McLachlan, G. R. W. Quispel and G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries, SIAM J. Numer. Anal., 35 (1998), pp. 586-599.
20. F. Valiquette, Discretizations Preserving All Lie Point Symmetries of the Korteweg-de Vries equation, Proceedings Volume of the XXV International Colloquium on Group Theoretical Methods in Physics (2005), pp. 539-544
21. N.N. Janenko and Ju. I. sokin, On a group classification of difference schemes for the system of one-dimensional equations of gas dynamics, Proc. Steklov. Insto. Math,. Vol.122 (1973) 87-99
22. N.N. Janenko and Ju. I. sokin, Group classification of difference schemes for a system of one-dimensional equations of gas dynamics, Amer, Math. Soc. Transl., Vol.104(2), 1976, 259-265
23. Ju. I. Sokin, The method of differential approximation, Springer-Verlag, New York, 1983
24. A.S. Dawes, Invariant numerical methods, Int. J. for number. Methods on Fluids, vol.56, 2008, 1185-1191
25. Liu, Chein-Shan. (2001). Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics, 36(7), 1047-1068
26. Liu, C. (2006a). Preserving constraints of differential equations by numerical methods based on integrating factors. Computer Modeling In Engineering And Sciences, 12(2), 83.
27. Liu, C. (2005). Nonstandard group-preserving schemes for very stiff ordinary differential equations. Computer Modeling in Engineering and Sciences, 9(3), pp.255-272
28. Liu, C. (2006b). An efficient backward group preserving scheme for the backward in time Burgers equation. Computer Modeling in Engineering and Sciences, 12(1), 55.
29. Liu, C, Chang, C, & Chang, J. (2006). Past cone dynamics and backward group preserving schemes for backward heat conduction problems. Computer Modeling In Engineering and Sciences,12(1),67.
30. Liu, C.-S.(2006). A group preserving scheme for Burgers equation with very large Reynolds number. CMES, vol.12(3), 2006, 197-211
31. Chein-Shan Liu*:Cone of non-linear dynamical system and group preserving schemes. International Journal of Non-Linear Mechanics 36 (2001) 1047}1068.
32. 國家教育研究院-雙語詞彙、學術名詞暨辭書資訊網,2002年12月力學名詞辭典,楊德良著:http://terms.naer.edu.tw/detail/1325963/
33. 工程數學(上)(第二版),Dennis G. Zill & Michael R. Cullen 著,茆政吉 譯,P339。 |