參考文獻 |
1. J.M. Hill, Some partial solutions of finite elasticity. Ph.D. thesis, University of Queensland(1972)
2. J.M. Hill, On static similary deformation for isotropic materials. Q. Appl. Math., 40(1982)287-291
3. H.C Lei (李顯智) and J.A.Blume ,Lie group and invariant solution of the plane-strain equation of motion of a neo-Hookean solid. Int. J. Non-linear Mech. , 31(1996)565-482
4. H.C. Lei(李顯智) and M.J Hung , Linearity of waves in some systems of non-linear elasodynamics. Int. J. Non-Linear Mech. ,32(1997)353-360
5. H.C. Lei(李顯智)(2005), Sequentilly linearizable initial-boundary value problems for a neo-Hookean cylinder, Journal of the Chinese Institute of Engineers,28(2005)763-769.
6. F. A. McClintock, A criterion for ductile fracture by the growth of joles. J. Appl. Mech. , 35 (1968) 363-371.
7. A. Needleman, Void growth in an elastic-plastic medium. J. Appl. Mech., 39 (1972) 964-970.
8. A. L. Gurson, Contunuum theory of ductile rupture by void nucleation and growth : part I – yield criteria and flow rules for porous ductile media.
9. U. Stigh, Effects of interacting cavities on damage parameter J. Appl. Mech, 53 (1986)485-490.
10. J. M. Ball, Discontinous equilibrium solutions and cavitation nonlinear elasticity. Phil. Trans. R. Soc. Lond, A306 (1982) 557-610.
11. J. Sivaloganathan and S. J. Spector, On cavitation, configurational forces and inplications for fracture in a nonlinearly elastic material. J. Of Elasticity, 67 (2002) 25-49.
12. C. A. Stuart, Radially symmetric cavitation for hyperelastic materials, Ann. Inst. Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
13. C.O. Horgan and R. Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J. Elasticity, 16(1986) 189-200.
14. F. Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart. Appl. Math. 50 (1922) 201-226.
15. C. A. Stuart, Estimating the critical radius for radially symmetric cavitation, Quart. Appl. Math., 51 (1993)251-263.
16. S. Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int. J. Non-Linear Mech., 30 (1995) 899-914.
17. S. Biwa, E.matsumoto and T. Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J. Appl. Mech. 61 (1994) 395-401.
18. H. C. Lei (李顯智) and H. W. Chang, Void formation and growth in a class of compressible solids. J. Engrg. Math., 30 (1996) 693-706.
19. H.S. Hou and R. Abeyaratne, Cavitation in elastic and elastic-plastic solids. J.Mech.Phys.Solids,40(1992)571-592.
20. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive midelong of porous hyperelastic matirial.Mech.Mater.,36(2004)347-358.
21. J.Li, D. Mayau and F. Songm A constitutive model for cavitation and cavity growth in ruber-like materials under arbitrary tri-axial loading. Int. J. Solids struct., 44(2007)6080-6100.
22. J. Li D. Mayau and V. Lagarrigue, A constitutive model dealing with danage due to cavity growth and the mullins effect in rubber-like matirials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
23. R.W. Ogden,“Non-Linear Elastic Dfomations” .Ellis Horwood Limited, Chichester, England,1984.
24. J. Kevorkian, “patial Differetial Equations Analytical Solution Techniques”.Wadsworth & Brooks/Cole Pub. Co., California, USA,1989.
25. H. D. Hibbitt, B. I. Karlsson, and E. P. Sorensen, ABAQUS Users Manual, Version 4.7. Providence, Rhole Island, USA, 1988. |