博碩士論文 100322096 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:243 、訪客IP:3.148.112.250
姓名 李瑋傑(Wei-Jay Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 彈性材料圓孔非對稱變形近似解研究
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算
★ 多微孔橡膠材料受拉變形平面應力分析★ 非線性彈性固體微孔變形特性
★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定
★ 牛頓型疊代法二次項效應★ GEH理論壓密量速算式
★ 擴散管流量解析解★ 宏觀收斂迭代法速度比較
★ 二次項效應混合型牛頓疊代法之研究★ 漸增載重之壓密速算公式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文是以偏微分方程理論和有限元素分析來推導圓孔的非對稱變形近似解,結果與文獻中之Hou-Abeyaratne變形場(簡稱HAF,即Hou-Abeyaratne field)近似,證實了本文所採用方法之有效性。
摘要(英) This paper is based on the theory of partial differential equations and finite element analysis to derive the cavitations asymmetric deformation approximate solution and the existing literature Hou-Abeyaratne deformation field (abbreviated HAF, namely Hou-Abeyaratne field) compared with those obtained similar results, verify the effectiveness of methods used in this paper.
關鍵字(中) ★ 非對稱圓孔變形 關鍵字(英) ★ Hou-Abeyaratne field
論文目次 目錄
摘要.....................................................II
Abstract.................................................III
致謝......................................................IV
圖目錄......................................................V
表目錄.....................................................VI
符號說明..................................................VII
第一章 緒論..................................................1
第二章 基礎理論
2-1橡膠材料變形控制方程的推導...............................3
2-2模型的幾何、尺寸及邊界條件
2-2-1模型的建立........................................6
2-2-2網格的建立........................................8
2-2-3邊界條件的建立...................................10
第三章 Hou-Abeyaratne變形場.................................11
第四章 HAF的推廣............................................18
第五章 有限元素與結果分析.....................................24
第六章 結論.................................................36
參考文獻...................................................37
參考文獻 1. J.M. Hill, Some partial solutions of finite elasticity. Ph.D. thesis, University of Queensland(1972)
2. J.M. Hill, On static similary deformation for isotropic materials. Q. Appl. Math., 40(1982)287-291
3. H.C Lei (李顯智) and J.A.Blume ,Lie group and invariant solution of the plane-strain equation of motion of a neo-Hookean solid. Int. J. Non-linear Mech. , 31(1996)565-482
4. H.C. Lei(李顯智) and M.J Hung , Linearity of waves in some systems of non-linear elasodynamics. Int. J. Non-Linear Mech. ,32(1997)353-360
5. H.C. Lei(李顯智)(2005), Sequentilly linearizable initial-boundary value problems for a neo-Hookean cylinder, Journal of the Chinese Institute of Engineers,28(2005)763-769.
6. F. A. McClintock, A criterion for ductile fracture by the growth of joles. J. Appl. Mech. , 35 (1968) 363-371.
7. A. Needleman, Void growth in an elastic-plastic medium. J. Appl. Mech., 39 (1972) 964-970.
8. A. L. Gurson, Contunuum theory of ductile rupture by void nucleation and growth : part I – yield criteria and flow rules for porous ductile media.
9. U. Stigh, Effects of interacting cavities on damage parameter J. Appl. Mech, 53 (1986)485-490.
10. J. M. Ball, Discontinous equilibrium solutions and cavitation nonlinear elasticity. Phil. Trans. R. Soc. Lond, A306 (1982) 557-610.
11. J. Sivaloganathan and S. J. Spector, On cavitation, configurational forces and inplications for fracture in a nonlinearly elastic material. J. Of Elasticity, 67 (2002) 25-49.
12. C. A. Stuart, Radially symmetric cavitation for hyperelastic materials, Ann. Inst. Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
13. C.O. Horgan and R. Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J. Elasticity, 16(1986) 189-200.
14. F. Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart. Appl. Math. 50 (1922) 201-226.
15. C. A. Stuart, Estimating the critical radius for radially symmetric cavitation, Quart. Appl. Math., 51 (1993)251-263.
16. S. Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int. J. Non-Linear Mech., 30 (1995) 899-914.
17. S. Biwa, E.matsumoto and T. Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J. Appl. Mech. 61 (1994) 395-401.
18. H. C. Lei (李顯智) and H. W. Chang, Void formation and growth in a class of compressible solids. J. Engrg. Math., 30 (1996) 693-706.
19. H.S. Hou and R. Abeyaratne, Cavitation in elastic and elastic-plastic solids. J.Mech.Phys.Solids,40(1992)571-592.
20. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive midelong of porous hyperelastic matirial.Mech.Mater.,36(2004)347-358.
21. J.Li, D. Mayau and F. Songm A constitutive model for cavitation and cavity growth in ruber-like materials under arbitrary tri-axial loading. Int. J. Solids struct., 44(2007)6080-6100.
22. J. Li D. Mayau and V. Lagarrigue, A constitutive model dealing with danage due to cavity growth and the mullins effect in rubber-like matirials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
23. R.W. Ogden,“Non-Linear Elastic Dfomations” .Ellis Horwood Limited, Chichester, England,1984.
24. J. Kevorkian, “patial Differetial Equations Analytical Solution Techniques”.Wadsworth & Brooks/Cole Pub. Co., California, USA,1989.
25. H. D. Hibbitt, B. I. Karlsson, and E. P. Sorensen, ABAQUS Users Manual, Version 4.7. Providence, Rhole Island, USA, 1988.
指導教授 李顯智(Hin-chi Lei) 審核日期 2013-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明