博碩士論文 993202001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:204 、訪客IP:18.191.116.19
姓名 蔡明翰(Ming-han Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ 彈性材料圓孔非對稱變形近似解研究★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算
★ 多微孔橡膠材料受拉變形平面應力分析★ 非線性彈性固體微孔變形特性
★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響
★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定
★ 牛頓型疊代法二次項效應★ GEH理論壓密量速算式
★ 擴散管流量解析解★ 宏觀收斂迭代法速度比較
★ 二次項效應混合型牛頓疊代法之研究★ 漸增載重之壓密速算公式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
HAF 目前只用於孔洞非對稱拉伸,尚未在孔洞壓縮問題上應用,
孔洞壓縮以往有學者研究過,重要是研究孔洞崩塌問題,這問題是孔洞對稱變形的問題,尚未有非對稱變形的問題,因為有待評估,正確解欠缺,但其實可能可以用HAF,不過HAF在壓縮問題上的error有待評估,故本文加以分析。
摘要(英) Abstract
HAF currently only used for holes asymmetric stretching.
The issue has not been applied in the hole compression. Some scholars have studied Hole compression in the past. The important part is the study of hole collapse problems which is the problem of deformation hole symmetry, There is no problem of deformation asymmetric yet because there are have some parts to be assessed and the correct solution lacking, In fact, it may be able to use the HAF. However, on the issue of HAF error in the compression to be assessed. Therefore, this article analyzed.
關鍵字(中) ★ 橡膠材料
★ 孔洞壓縮
★ 非對稱變形
關鍵字(英) ★ HAF
★ Hou-Abeyaratne filed
論文目次 目 錄
中文摘要...............................................I
英文摘要...............................................II
致謝...................................................III
目錄...................................................IV
圖目錄.................................................VI
表目錄.................................................X
符號表.................................................XII
第一章 導論............................................1
第二章 基礎理論........................................3
2-1橡膠材料變形控制方程式的推導.................. 3
2-2材料模型之選取................................ 5
2-2-1 Neo-Hookean 模型.........................5
2-2-2 Ogden材料模型應變能密度函數............. 6
2-3 邊界條件......................................7
第三章 Hou-Abeyaratne變形場........................... 8
第四章 有限元素模式....................................12
4-1有限元素模型建立..............................12
4-2有限元素模型材料..............................14
4-3有限元素模型邊界條件..........................16
4-4有限元素模型網格建立..........................17
第五章 計算分析........................................22
5-1 圓孔半徑為0.1的變形...........................25
5-2 圓孔半徑為0.3的變形...........................34
5-3 圓孔半徑為0.5的變形...........................42
5-4改變輸入選項所產生的影響........................50
第六章 結論與建議......................................70
參考文獻...............................................72
參考文獻 參考文獻
1. F.A.McClintock, A criterion for ductile fracture by the
growth of holes. J.Appl. Mech., 35 (1968) 363-371.
2. A.Needleman, Void growth in an elastic-plastic medium.
J.Appl. Mech., 39 (1972) 964-970.
3. A.L.Gurson, Continuum theory of ductile rupture by void
nucleation and growth : Part I-yield criteria and flow
rules for porous ductile media.
J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15.
4. U.Stigh, Effects of interacting cavities on damage parameter.
J.Appl. Mech,53 (1986) 485-490.
5. H.S.Hou and R.Abeyarante, Cavitation in elastic and
elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992)
571-592.
6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber
Chem.Tech., 63 (1990) G49-G53.
7. J.M.Ball, Discontinous equilibrium solutions and
cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond,
A306 (1982) 557-610.
8. C.O.Horgan and D.A.Polignone, Cavitation in nonlinearly
elastic solids: a review. Appl.Mech.Rev., 48 (1995)
471-485.
9. C.Fong, Cavitation criterion for rubber materials: a review
of void-growth models. J. Polymer Sci.: Part B: Polymer
Phys., 39(2001)2081-2096.
10. J. Sivaloganathan and S.J. Spector, On cavitation,
configurational forces and implications for fracture in a
nonlinearly elastic material. J. of Elasticity,
67(2002)25-49.
11. E. Bayraktar, et. al., Damage mechanisms in natural (NR)
and synthetic rubber (SBR): nucleation, growth and
instability of the cavitation. Fatique Fract. Engrg. Mater.
Struct., 31(2008)184-196.
12. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and
growth in solids: A self-consistent statistical theory. J.
Mech. Phys. Solids, 56(2008)336-359.
13. C.A.Stuart, Radially symmetric cavitation for hyperelastic
materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2
(1985) 33-66.
14. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a
compressible nonlinearly elastic medium: growth of a
micro-void. J.Elasticity, 16 (1986) 189-200.
15. F.Meynard, Existence and nonexistence results on the
radially symmetric cavitationproblem. Quart.Appl.Math.
50 (1992) 201-226.
16. C.A.Stuart, Estimating the critical radius for radially
symmetric cavitation, Quart.Appl.Math., 51 (1993)
251-263.
17. S.Biwa, Critical stretch for formation of a cylindrical void
in a compressible hyperelastic material. Int.J.Non-Linear
Mech., 30 (1995) 899-914
18. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive
parameters on formation of a spherical void in a
compressible non-linear elastic material. J.Appl.Mech. 61
(1994) 395-401
19. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth
in a class of compressible solids. J.Engrg.Math., 30 (1996)
693-706.
20. H.S. Hou and R. Abeyaratne, Cavitation in elastic and elastic-plastic solids.. J. Mech. Phys. Solids, 40 (1992) 571-592
21. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
22. J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
23. J. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
24. Abeyarantne ,r, and Hou,H.S., Void collapse in an elastic solid.J.Elasticity,26(1991)23-42
25. Mechanical behavior of crustal rocks under true triaxial compression conditions- volumetric strain and dilatancy, M.Kwasniewski,Archives of Mining Sciences,52(2007) 409-435
26. size and shape evolution of pores in viscoplastic matrix under compression,M. Berli , M. L. Accorsi and D. Or Int. J. for numer. Analy. Methods. In Geomech.,30(2006)1259-1281
27. Void growth versus void collapse in a creeping single crystal , A.srivastava and A. Needleman J.Mech,phys,Solids 61(2013)1169-1184
28. R.W. Ogden, On constitutive relations for elastic and plastic materials. Ph.D. Dissertation, Cambridge University, 1970.
29. R.W. Ogden, Large deformation isotropic elasticity I: on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc.London, Series A, 326(1972)565-584.
30. R.W. Ogden, ‘Elastic Deformations of rubberlike solids’ in Mechanics of Solids, The Rodney Hill 60th Anniversary Volume (Eds. H.G. Hopkins and M.J. Sewell). Pergamon Press, pp. 499-537, 1982.
31. R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England,1984.
32. T. Beda, Modelling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models. J. Polymer Sci.: Part B: Polymer phys., 45(2007)1713-1732.
指導教授 李顯智(Hin-chi Lei) 審核日期 2013-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明