參考文獻 |
參考文獻
1. F.A.McClintock, A criterion for ductile fracture by the
growth of holes. J.Appl. Mech., 35 (1968) 363-371.
2. A.Needleman, Void growth in an elastic-plastic medium.
J.Appl. Mech., 39 (1972) 964-970.
3. A.L.Gurson, Continuum theory of ductile rupture by void
nucleation and growth : Part I-yield criteria and flow
rules for porous ductile media.
J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15.
4. U.Stigh, Effects of interacting cavities on damage parameter.
J.Appl. Mech,53 (1986) 485-490.
5. H.S.Hou and R.Abeyarante, Cavitation in elastic and
elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992)
571-592.
6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber
Chem.Tech., 63 (1990) G49-G53.
7. J.M.Ball, Discontinous equilibrium solutions and
cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond,
A306 (1982) 557-610.
8. C.O.Horgan and D.A.Polignone, Cavitation in nonlinearly
elastic solids: a review. Appl.Mech.Rev., 48 (1995)
471-485.
9. C.Fong, Cavitation criterion for rubber materials: a review
of void-growth models. J. Polymer Sci.: Part B: Polymer
Phys., 39(2001)2081-2096.
10. J. Sivaloganathan and S.J. Spector, On cavitation,
configurational forces and implications for fracture in a
nonlinearly elastic material. J. of Elasticity,
67(2002)25-49.
11. E. Bayraktar, et. al., Damage mechanisms in natural (NR)
and synthetic rubber (SBR): nucleation, growth and
instability of the cavitation. Fatique Fract. Engrg. Mater.
Struct., 31(2008)184-196.
12. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and
growth in solids: A self-consistent statistical theory. J.
Mech. Phys. Solids, 56(2008)336-359.
13. C.A.Stuart, Radially symmetric cavitation for hyperelastic
materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2
(1985) 33-66.
14. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a
compressible nonlinearly elastic medium: growth of a
micro-void. J.Elasticity, 16 (1986) 189-200.
15. F.Meynard, Existence and nonexistence results on the
radially symmetric cavitationproblem. Quart.Appl.Math.
50 (1992) 201-226.
16. C.A.Stuart, Estimating the critical radius for radially
symmetric cavitation, Quart.Appl.Math., 51 (1993)
251-263.
17. S.Biwa, Critical stretch for formation of a cylindrical void
in a compressible hyperelastic material. Int.J.Non-Linear
Mech., 30 (1995) 899-914
18. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive
parameters on formation of a spherical void in a
compressible non-linear elastic material. J.Appl.Mech. 61
(1994) 395-401
19. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth
in a class of compressible solids. J.Engrg.Math., 30 (1996)
693-706.
20. H.S. Hou and R. Abeyaratne, Cavitation in elastic and elastic-plastic solids.. J. Mech. Phys. Solids, 40 (1992) 571-592
21. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
22. J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
23. J. Li, D. Mayau and V. Lagarrigue, A constitutive model dealing with damage due to cavity growth and the Mullins effect in rubber-like materials under triaxial loading. J. Mech. Phys. Solids, 56(2008)953-973.
24. Abeyarantne ,r, and Hou,H.S., Void collapse in an elastic solid.J.Elasticity,26(1991)23-42
25. Mechanical behavior of crustal rocks under true triaxial compression conditions- volumetric strain and dilatancy, M.Kwasniewski,Archives of Mining Sciences,52(2007) 409-435
26. size and shape evolution of pores in viscoplastic matrix under compression,M. Berli , M. L. Accorsi and D. Or Int. J. for numer. Analy. Methods. In Geomech.,30(2006)1259-1281
27. Void growth versus void collapse in a creeping single crystal , A.srivastava and A. Needleman J.Mech,phys,Solids 61(2013)1169-1184
28. R.W. Ogden, On constitutive relations for elastic and plastic materials. Ph.D. Dissertation, Cambridge University, 1970.
29. R.W. Ogden, Large deformation isotropic elasticity I: on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc.London, Series A, 326(1972)565-584.
30. R.W. Ogden, ‘Elastic Deformations of rubberlike solids’ in Mechanics of Solids, The Rodney Hill 60th Anniversary Volume (Eds. H.G. Hopkins and M.J. Sewell). Pergamon Press, pp. 499-537, 1982.
31. R.W. Ogden, “Non-Linear Elastic Deformations”. Ellis Horwood Limited, Chichester, England,1984.
32. T. Beda, Modelling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models. J. Polymer Sci.: Part B: Polymer phys., 45(2007)1713-1732. |