參考文獻 |
Adams, J. B., D. Sabol, V. Kapos, R. A. Filho, D. A. Roberts, M. O. Smith and A. R. Gillespie, “Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazôn”, Remote Sensing of Environment, 52, 137-154 (1995).
Adams, R. and L. Bischof, “Seeded region growing”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641-647 (1994).
Alpers, W. and H. Hühnerfuss, “The damping of ocean waves by surface films: A new look at an old problem”, Journal of Geophysical Research: Oceans, 94(C5), 6251-6265 (1989).
Ashton, E. A. and A. Schaum, “Algorithms for the detection of sub-pixel targets in multispectral imagery”, Photogrammetric Engineering and Remote Sensing, 67(7), 723-731 (1998).
Bannari, A., H. Asalhi, and P. M. Teillet. “Transformed difference vegetation index (TDVI) for vegetation cover mapping”, Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium, 5, 3053-3055 (2002).
Bern, T. I., T. Wahl, T. Anderssen, and R. Olsen, “Oil spill detection using satellite based SAR: Experience from a field experiment”, Proceedings of the first ERS-1 Symposium, Cannes, France, 829-834 (1992).
Bovolo, F. and L. Bruzzone, “A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain”, IEEE Transactions on Geoscience and Remote Sensing, 45(1), 218-236 (2007).
Byrne, G. F., P. F. Crapper, and K. K. Mayo, “Monitoring land-cover change by principal component analysis of multitemporal Landsat data”, Remote Sensing of Environment, 10(3), 175-184 (1980).
Canty, M. J. and A. A. Nielsen, “Automatic radiometric normalization of multitemporal satelliteimagery with the iteratively re-weighted MAD transformation”, Remote Sensing of Environment, 112(3), 1025-1036 (2008).
Chang, C. I., Hyperspectral imaging: Techniques for spectral detection and classification, Kluwer Academic/Plenum Publishers, New York, USA (2003).
Chen, C. F. and L. Y. Chang, “Extraction of oil slicks on the sea surface from optical satellite images by using an anomaly detection technique”, Journal of Applied Remote Sensing, 4, 1-14 (2010).
Chen, J., P. Gong, C. He, R. Pu and P. Shi, “Land-use/land-cover change detection using improved change-vector analysis”, Photogrammetric Engineering and Remote Sensing, 69(4), 369-379 (2003).
Chen, X., L. Vierling and D. Deering, “A simple and effective radiometric correction method to improve landscape change detection across sensors and across time”, Remote Sensing of Environment, 98(1), 63-79 (2005).
Convover, W. J. Practical nonparametric statistics, 3rd ed., John Wiley and Sons, Inc., New York, USA (1999).
Coppin, P., I. Jonckheerea, K. Nackaertsa, B. Muysa and E. Lambinb, “Digital change detection methods in ecosystem monitoring: a review”, International Journal of Remote Sensing, 25(9), 1565-1596 (2004).
Crist, E. P., and R. C. Cicone, “A physically-based transformation of Thematic Mapper data–The TM Tasseled Cap”, IEEE Transactions on Geoscience and Remote Sensing, 3, 256-263 (1984).
Curran, P. J., “Multispectral remote sensing for estimating biomass and productivity”, In Plants and the Day-light Spectrum, edited by H. Smith, Academic Press, New York, USA, 65-99 (1981).
Dempster, A. P., N. M. Laird, and D. B. Rubin, “Maximum likelihood estimation from incomplete data via the EM algorithm”, Journal of the Royal Statistical Society. Series B (Methodological), 1-38 (1977).
Desclée, B., P. Bogaert and P. Defourny, “Forest change detection by statistical object-based method”, Remote Sensing of Environment, 102(1-2), 1-11 (2006).
Du, Y., P. M. Teillet and J. Cihlar, “Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection”, Remote Sensing of Environment, 82(1), 123-134 (2002).
Escuin, S., R. Navarro and P. Fernández, “Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from Landsat TM/ETM images”, International Journal of Remote Sensing, 29(4), 1053-1073 (2008).
Espedal, H. A. and T. Wahl, “Satellite SAR oil spill detection using wind history information”, International Journal of Remote Sensing, 20(1), 49-65 (1999).
European Space Agency, “Oil pollution monitoring”, ESA brochure: ERS and its applications-Marine BR-128, 1 (1998).
Fingas, M. The basics of oil spill cleanup, 2nd edition, CRC Press LLC, Boca Raton, Florida, USA (2001).
Goldman, A. and I. Cohen, “Anomaly detection based on an iterative local statistics approach”, Signal Processing, 84(7), 1225-1229 (2004).
Huang, C., B. Wylie, L. Yang, C. Homer and G. Zylstra, “Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance”, International Journal of Remote Sensing, 23(8), 1741-1748 (2002).
Im, J., J. R. Jensen and J. A. Tullis, “Object-based change detection using correlation image analysis and image segmentation”, International Journal of Remote Sensing, 29(2), 399-423 (2008).
Im, J., J. Rhee, J. R. Jensen and M. E. Hodgson, “An automated binary change detection model using a calibration approach”, Remote Sensing of Environment, 106(1), 89-105 (2007).
Jha, M. N., J. Levy and Y. Gao, “Advances in remote sensing for oil spill disaster management: state-of-the-art sensors technology for oil spill surveillance”, Sensors, 8, 236-255 (2008).
Kauth, R. J. and G. S. Thomas, “The tasselled cap - a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat.”, Laboratory for Applications of Remote Sensing Symposia, Purdue University, West Lafayette, Indiana, USA, Paper 159 (1976).
Kokaly, R. F., B. W. Rockwell, S. L. Haire, and T. V. King, “Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing”, Remote Sensing of Environment, 106(3), 305-325 (2007).
Koutsias, N., M. Karteris, A. Fernandez-Palacios, C. Navarro, J. Jurado, R. Navarro and A. Lobo, “Burned land mapping at local scale”, Remote Sensing of Large Wildfires, Springer-Verlag, Berlin, Heidelberg (2000).
Kwon, S. H. “Threshold selection based on cluster analysis”, Pattern Recognition Letters, 25(9), 1045-1050 (2004).
Lennon, M., N. Thomas, V. Mariette, S. Babichenko and G. Mercier, “Oil slick detection and characterization by satellite and airborne sensors: experimental results with SAR, hyperspectral and lidar data”, Proceedings of IGARSS’05, Seoul, Korea, 1, 292-295 (2005).
Lennon, M., S. Babichenko, N. Thomas, V. Mariette, G. Mercier, and A. Lisin, “Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence”, EARSeL eProceedings, 5, 1-9 (2006).
Lillesand, T. M., R. W. Kiefer and J. W. Chipman, Remote sensing and image interpretation, 5th ed., John Wiley and Sons, Inc., New York, NY (2004).
Lloyd, S. P. “Least squares quantization in PCM”, IEEE Transactions on Information Theory, 28(2), 129-137 (1982).
Lu, D., P. Mausel, E. Brondizio and E. Moran, “Change detection techniques”, International Journal of Remote Sensing, 25(12), 2365-2401 (2004).
Lunetta, R. S. and C. D. Elvidge, Remote sensing change detection: Environmental monitoring methods and applications, Taylor and Francis Ltd., London (1999).
McLachlan, G. J. Discriminant analysis and statistical pattern recognition, John Wiley & Sons, Hoboken, New Jersey, USA (2004).
Otremba, Z. “The impact on the reflectance in VIS of a type of crude oil film floating on the water surface”, Optics Express, 7(3), 129-134 (2000).
Otremba, Z. and J. Piskozub, “Modelling of the optical contrast of an oil film on a sea surface”, Optics Express, 9(8), 411-416 (2001).
Otsu, N. “A threshold selection method from gray-level histograms”, IEEE Transactions on Systems, Man and Cybernetics, 9(1), SMC-9, 62-66 (1979).
Pavlakis, P., A. Sieber, and S. Alexandry, “Monitoring oil-spill pollution in the Mediterranean with ERS SAR”, ESA Earth Observation Quarterly, 52, 8-11(1996).
Petropoulosa, G. P., C. Kontoesa and I. Keramitsogloua, “Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using Support Vector Machines”, International Journal of Applied Earth Observation and Geoinformation, 13, 70-80 (2011).
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical recipes in C, 2nd ed., Cambridge University Press, Cambridge (1992).
Quintano, C., A. Fernández-Manso, O. Fernández-Manso and Y. E. Shimabukuro, “Mapping burnt areas in Mediterranean countries using spectral mixture analysis from a uni-temporal perspective”, International Journal of Remote Sensing, 27(4), 645-662 (2006).
Redner, R. A. and H. F. Walker, “Mixture densities, maximum likelihood and the EM algorithm”, Society for Industrial and Applied Mathematics Review, 26(2), 195-239 (1984).
Reed, I. and X. Yu, “Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution”, IEEE Transactions on Acoustics, Speech and Signal Processing, 38(10), 1760-1770 (1990).
Richards, J. A. “Thematic mapping from multitemporal image data using the principal components transformation”, Remote Sensing of Environment, 16(1), 35-46 (1984).
Rubec, C., and J. Thie, “Land use monitoring with Landsat digital data in southwestern Manitoba”, Proceedings of the fifth Canadian Symposium on Remote Sensing, Victoria, British Columbia, Canada, 136-150 (1987).
Serret, P., X. A. Álvarez-Salgado, and A. Bode, “Spain’s earth scientists and the oil spill”, Science 299(5606), 511 (2003).
Singh, A., “Digital change detection techniques using remotely sensed data”, International Journal of Remote Sensing, 10(6), 989-1003 (1989).
Song, C., C. E. Woodcock, K. C. Seto, M. P. Lenney and S. A. Macomber, “Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?”, Remote Sensing of Environment, 75(2), 230-244 (2001).
Srinath, M. D., P.K. Rajasekaran, and R. Viswanathan, Introduction to statistical signal processing with applications, Prentice-Hall, Inc. Upper Saddle River, New Jersey, USA (1995).
Stellman, C. M., G. G. Hazel, F. Bucholtz, and J. V. Michalowicz, “Real-time hyperspectral detection and cuing”, Optical Engineering, 39(7), 1928-1935 (2000).
Stow, D., L. Tinney, and J. Estes, “Deriving land use / land cover change statistics form Landsat: a study of prime agricultural land”, Proceeding of the 14th International Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, USA, 1227-1237 (1980).
Verbyla, D. L. and S. H. Boles, “Bias in land cover change estimates due to misregistration”, International Journal of Remote Sensing, 21(18), 3553-3560 (2000).
Wahl, T., Å. Skøelv, and J. H. S. Andersen, “Practical use of ERS-1 SAR images in pollution monitoring”, Proceedings of IGARSS’94, Pasadena, California, USA, 4, 1954-1956 (1994).
Walter, V., “Object-based classification of remote sensing data for change detection”, ISPRS Journal of Photogrammetry and Remote Sensing, 58, 225-238 (2004).
Weismiller, R. A., S. J. Kristof, D. K. Scholz, P. E. Anuta, and S. A. Momin, “Change detection in coastal zone environments”, Photogrametric Engineering and Remote Sensing, 43(12), 1533-1539 (1977).
Wiemker, R., “An iterative spectral-spatial bayesian labeling approach for unsupervised robust change detection on remotely sensed multispectral imagery”, Proceedings of the 7th International Conference on Computer Analysis of Images and Pattern, Kiel, Germany, 263-270 (1997).
Wiemker, R., A Speck, D. Kulbach, H. Spitzer and J. Bienlein, “Unsupervised robust change detection on multispectral imagery using spectral and spatial features”, Proc. of the Third International Airborne Remote Sensing Conference and Exhibition, Copenhagen, Denmark, 1, 640-647 (1997).
Wilson, J. R., C. Blackman, and G. W. Spann, “Land use change detection using Landsat data”, Proceedings of the 5th Annual Remote Sensing of Earth Resources Conference, University of Tennesses, Tullhama, Tennesse, USA, 79-91 (1976).
Yamamoto, T., H. Hanaizumi and S. Chino, “A change detection method for remotely sensed multispectral and multitemporal image using 3-D segmentation”, IEEE Transactions on Geoscience and Remote Sensing, 39(5), 976-985 (2001).
Yang, X. and C. P. Lo, “Relative radiometric normalization performance for change detection from multi-date satellite images”, Photogrammetric Engineering and Remote Sensing, 66(8), 967-980 (2000). |