博碩士論文 963402006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:206 、訪客IP:3.139.86.160
姓名 邱進隆(Chin-Lung Chiu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 鋼筋混凝土內部缺陷之合成聚焦顯像法
(A Synthetic Aperture Focusing Technique for Imaging Defects inside the Reinforced Concrete Element)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 運用彈性波檢測混凝土結構內部缺陷之方法眾多且已行之有年,但眾多的技術在早期檢測上的運用大部分是屬於點-線的檢測方式,檢測結果較為局部。而隨著計算機軟硬體的迅速發展,許多專家學者將彈性波搭配影像分析也逐漸發展成為一新的檢測技術。然而,這其中大部分的檢測方法均只針對純混凝土試體進行探討。而實際的混凝土結構物往往都有鋼筋的存在。因此,本研究即針對含有鋼筋的混凝土試體利用彈性波合成聚焦顯像法進行敲擊掃描研究。
文中以暫態彈性波為基礎,結合合成聚焦顯像法,發展混凝土結構物內部缺陷顯像技術。在研究中均以有限差分法數值模擬,初步進行多個內含異質缺陷之混凝土試體進行敲擊訊號模擬及聚焦顯像,後續再搭配實驗,驗證該研究之可行性。
在研究之初,先以單測面時間域之速度訊號進行聚焦顯像。在數值與實驗的結果中,均顯示不論是孔洞亦或是裂縫缺陷在純混凝土試體中均有不錯的顯像效果。文中亦深入探討鋼筋對於合成聚焦顯像法之影響,並成功定量出掃描影像與鋼筋-波長間的相互關係。接續,以先進的時頻域訊號處理方法(Hilbert-Huang Transform, HHT),利用其可分析非線性及非穩態訊號之特點,並對於訊號中之不連續在時頻訊號上會有明顯頻率跳動之優勢,藉以凸顯檢測訊號中的缺陷反射訊號,進而獲得更佳品質的混凝土結構內部缺陷顯像。
而就單一測面檢測時,顯像結果會導致缺陷資訊有所缺漏之問題。在文中提出了以多測面聚焦影像疊加來加以改善,能夠更加完整地呈現結構物內部缺陷資訊。並提出以影像重建之方法重新修正疊加影像,使檢測圖像辨識度大幅提升。後續,亦針對彈性波合成聚焦影像之影像品質進行探討。文中將影像品質區分為解析度與對比度兩種控制因子。並依據分析結果提出未來於現地實際運用時可依循之標的。
最後,本文依據合成聚焦顯像法理論與操作方式,結合類比-數位轉換卡(A/D card)及筆記型電腦,架構一套混凝土結構內部缺陷檢測系統。配合圖形介面的硬體控制及訊號、影像處理程式之開發,縮減了運用暫態彈性波合成聚焦顯像法檢測混凝土缺陷之操作時程,使系統能夠有效率地應用於現地混凝土結構之非破壞性檢測。
摘要(英) This study combined with the transient elastic wave propagation theory and the synthetic aperture focusing technique (SAFT) to develop a method for imaging the defects inside the reinforced concrete structure. In the study, the finite deference method was used to simulate the stress wave propagation behavior in the concrete specimen with embedded defects and verified the results by the experiment.
For most of the existing elastic-wave-based nondestructive testing methods, it is hard to detect defects inside reinforced concrete elements owing to the complex signals reflected from rebars. Therefore, this study conferred the possibility for using SAFT to scan and image the defects inside the reinforced concrete. In the first, the time-velocity curves were used to get an image by SAFT. The numerical and experimental images also show nice results can be obtained either holes or cracks inside the absolute concrete specimens. Next, the influence of the rebar on quality of SAFT image was quantitatively analyzed by a serious of numerical simulations. The experimental results show good agreements with the quantitative analyzing results. Then, the time-frequency analysis was further used to transform the original time domain signals. After the transform, the instantaneous frequency can occur an obviously hopping in the non-continuous of the signals. According to the property of HT, the reflection signal can be highlighted and get better SAFT image.
This study also brought up to a multi-directional many-dimensional inspection technique to improve problem of the defect information missing in the one-directional inspection and used image reconstruct technique to upgrade the integrity of defect image. The image quality (resolution and contrast) of SAFT quality was qualitative analyzed by elastic wave theory and finite deference. From the analysis results, It is shown that this newly developed an inspecting procedure for in situ detection is fairly good.
Finally, a hardware system for detecting and imaging the defects inside the reinforced concrete based on the SAFT theory and operation procedure was developed. Due to the integration of the hardware control of graphical interface and the signal and image processing program, the total time for SAFT detection is dramatically reduced. The system can be more suitable for in situ non-destructive testing of the reinforced concrete.
關鍵字(中) ★ 混凝土結構
★ 缺陷
★ 孔洞
★ 彈性波
★ 非破壞檢測
★ 希爾伯特-黃轉換
★ 影像
關鍵字(英) ★ concrete structure
★ damage
★ void
★ elastic wave
★ non-destructive testing
★ HHT
★ image
論文目次 目錄
摘要........................I
Abstract...................... II
誌謝.......................III
目錄.......................IV
表目錄.......................VII
圖目錄......................VIII
第 1 章 導論 ....................1
1.1 研究動機 ...................... 1
1.2 文獻回顧 ...................... 2
1.2.1 彈性波檢測技術....................2
1.2.2 混凝土結構物顯像技術...................4
1.3 論文架構 ...................... 6
第 2 章 數值模擬與顯像原理...............7
2.1 彈性波有限差分原理.................. 7
2.1.1 彈性波動方程式....................7
2.1.2 有限差分方程式....................9
2.2 時間域合成聚焦顯像法原理 .................13
2.2.1 單測面檢測法.....................13
2.2.2 多測面檢測法.....................15
2.2.3 合成權重參數應用....................18V
2.3 時頻域合成聚焦顯像法..................21
2.3.1 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT)原理............21
2.3.2 瞬時頻率合成法...................23
第 3 章 單測面時間域合成聚焦顯像模擬與實驗........... 27
3.1 純混凝土聚焦影像 ...................27
3.1.1 純混凝土數值模擬....................27
3.1.2 純混凝土實驗結果....................40
3.2 鋼筋混凝土速度聚焦顯像................53
3.2.1 鋼筋混凝土數值模擬..................53
3.2.2 鋼筋效應分析.....................59
3.2.3 鋼筋混凝土實驗結果..................67
第 4 章 單測面時頻域合成聚焦顯像模擬與實驗........... 74
4.1 純混凝土聚焦顯像 ...................74
4.1.1 純混凝土數值模擬....................74
4.1.2 純混凝土實驗結果....................82
4.2 鋼筋混凝土聚焦顯像..................87
4.2.1 鋼筋混凝土數值模擬..................87
4.2.2 鋼筋混凝土實驗結果..................89
第 5 章 多測面時間域合成聚焦顯像模擬與實驗........... 93
5.1 純混凝土試體多測面影像................93
5.1.1 純混凝土數值模擬....................93
5.1.2 純混凝土實驗結果...................101
5.2 鋼筋混凝土試體多測面影像 ................107
5.2.1 鋼筋混凝土數值模擬...................107
5.2.2 鋼筋混凝土實驗結果...................110
第 6 章 彈性波合成聚焦影像品質探討 ...........114VI
6.1 影像解析度探討....................114
6.1.1 波傳簡化模型解析度分析..................115
6.1.2 數值驗證......................119
6.2 影像對比度探討....................122
6.2.1 波傳簡化模型對比度分析..................122
6.2.2 數值驗證......................125
第 7 章 彈性波合成聚焦顯像系統.............127
7.1 系統架構 .....................127
7.2 訊號擷取單元....................132
7.3 影像處理單元....................133
第 8 章 結論與未來展望 .................137
8.1 結論......................137
8.2 未來展望 .....................138
第 9 章 參考文獻...................140
參考文獻 [1] Breysse, Denys, Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques, London, (2012).
[2] Gruber, G. J., “Defect Identification and Sizing by the Ultrasonic Satellite-Pulse Technique”, Journal of Nondestructive Evaluation, Vol. 1, No. 4, pp. 263-276(1980).
[3] Temple J., “Time-Of-Flight Inspection: Theory” , Nuclear Energy, 22, No. 5, pp. 335-348(1983).
[4] Silk, M., “The Interpretation of TOFD Data In the Light of ASME XI and Similar Rules” , British Journal of NDT, Vol. 31, No. 5, pp. 242-251(1989).
[5] Carino, N.J., The Impact-Echo Method An Overview, Gaithersburg, MD, USA, (2001).
[6] Carino, N.J., Sansalone, M., and Hsu, N.N., "Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms," International Advances in Nondestructive Testing, 12th Edition, W.J. McGonnagle, Ed., Gordon & Breach Science Publishers, New York, pp. 117-146(1986).
[7] Sansalone, M., and Carino, N.J., "Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves," NBSIR 86-3452, National Bureau of Standards, Gaithersburg, Maryland, Sept., pp. 222(1986).
[8] Sansalone, M., and Carino, N.J., "Laboratory and Field Study of the Impact-Echo Method for Flaw Detection in Conerete," in Nondestructive Testing of Concrete, ACI Special Publication, pp. 1-20(1988).
[9] Cheng, C. and Sansalone, M., "The Impact-Echo Response of Concrete Plates Containing Delaminations-Numerical, Experimental, and Field Studies," RILEM: Materials and Structures, Vol. 26, pp. 274-285(1993) .
[10] Lin, Y. and Sansalone, M., "Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method," ACI Materials Journal, Vol. 89, No. 4, pp. 394-405(1992).
[11] Lin, Y.F., Lin, Y., and Tsai, B.Y., “Evaluating Bond Quality at the Interface Between Reinforcing Bars and Concrete Using the Impact-Echo Method,” ACI Materials Journal, Vol. 101, No. 2, pp. 154-161(2004).
[12] Lin, Y., Yen, J.Y.R., and Chen, C.F., "Tracing Initiation and Propagation of Cracks in Composite Slabs," Journal of Structural Engineering, ASCE, Vol. 122, No. 7, pp. 756-761 (1996).
[13] Wu, T.T. and Fang, J.S., “A new method for measuring concrete elastic constants using horizontally polarized conical transducers,” J. Acoust. Soc. Am., Vol. 101, No.1, pp. 330-336(1997).
[14] Wu, T.T., Fang, J.S., Liu, G.Y. and Kuo, M.K., “Detection of elastic constants of a concrete specimen using transient elastic waves,” J. Acoust. Soc. Am., Vol. 98, No. 4, pp.2142-2148(1995).
[15] Liu, P.L., Lee, K.H, Wu, T.T., Kuo, M.K., “Scan of Surface-opening Cracks in Reinforced Concrete Using Transient Elastic Waves”, NDT & E International, Vol. 34, pp. 219-226(2001).
[16] Nazarian, S. and Desai, R., “Automated surface wave method: Field testing,” J.Geotechnical Engineering, Vol. 119, No. 7, pp. 1094-1111(1993).
[17] Mori K., Spagnoli A., Murakami Y., Kondo G., Torigoe I., “A new non-contacting non-destructive testing method for defect detection in concrete,” NDT&E International, Vol. 35, pp. 399-406(2002).
[18] Boyd, Andrew J., ASCE M. and Ferraro, Christopher C., Torigoe, I., “Generalizing MUSIC and MVDR for Multiple Noncoherent Arrays,” Journal of Material in Civil Engineering, pp.153-158 (2005).
[19] Markus KRUGER, “Crack Depth Determination using advanced impact-echo techniques,” ECNDT pp.1~9 (2006).
[20] Waszak, John and Ludwig, Reinhold, “Three-dimensional ultrasonic imaging employing a time-domain synthetic aperture focusing technique,” IEEE Transactions on Instrumenrtation and Measurment. Vol. 39. No. 2 (1990).
[21] Liu, Pei Ling, Tsai, Chong Dao and Wu, Tsung Tsong, “Imaging of surface-breaking concrete crack using transient elastic waves,” NDT&E International, VOL. 29, No. 5, pp. 323-331 (1997).
[22] Krause, M., B~rmann, M., Frielinghaus, R., Kretzschmar, F. Kroggel, O., Langenberg, K. J., Maierhofer, C., Muller, W., Neisecke, J., Schickert, M., Schmitz, V., Wiggenhauser, H. and Wollbold, F., “Comparison of pulse-echo methods for testing concrete,” NDT&E International, Vol. 30, No.4, pp. 195-204 (1997).
[23] Krause, M., Mielentz, F., Milman, B., Muller, W., Schmitz, V., Wiggenhauser, H., “Ultrasonic imaging of concrete members using an array system,” NDT&E International, Vol. 34, pp. 403-408 (2001).
[24] 黃界超,「斷層掃描法在土木結構之應用評估」,碩士論文,國立中央大學土木工程研究所,桃園(1997)。
[25] 紀聖威,『線性走時內差法於土木構件斷層掃描之應用』,碩士論文,國立中央大學土木工程研究所,桃園(1998)。
[26] 張益瑄,『三維線性走時內插法於土木構件斷層掃描之應用』,碩士論文,國立中央大學土木工程研究所,桃園(2001)。
[27] 楊政穎,『鋼筋混凝土構件斷層掃描之顯像處理』,碩士論文,國立中央大學土木工程研究所,桃園(2003)。
[28] Chang, Young-Fo, Wang, Chung-Yue, Hsieh, Chao-Hui, “Feasibility of detecting embedded cracks in concrete structures by reflection seismology,” NDT&E International, Vol. 34, pp. 39-48 (2001).
[29] Martin, J., Broughton, K.J., Giannopolous, Hardy, A., M.S.A., Forde, M.C., “Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams,” NDT&E International, Vol. 34, pp. 107-113 (2001).
[30] Ohtsu, Masayasu and Watanabe, Takeshi, “Stack imaging of spectral amplitudes based on impact-echo for flaw detection,” NDT&E International, Vol. 35, pp. 189-196 (2002).
[31] Watanabe, Takeshi, Morita, Takashi, Hashimoto, Chikanori, Ohtsu, Masayasu, “Detecting voids in reinforced concrete slab by SIBIE,” Construction and Building Materials Vol.18, pp.225-231 (2004).
[32] Schickert, Martin, Krause, Martin and Muller, Wolfgang, “Ultrasonic Imaging of Concrete Elements Using Reconstruction by Synthetic Aperture Focusing Technique,” Journal of Material in Civil Engineering, pp.235-246 (2003).
[33] 鄭明遠,「合成聚焦影像掃描於混凝土結構缺陷檢測之初步研究」,碩士論文,中華大學土木工程研究所,新竹(2004)。
[34] 林朝慶,「合成聚焦影像掃描於混凝土結構缺陷檢測之三維數值模擬與實驗研究」,碩士論文,中華大學土木工程研究所,新竹(2005)。
[35] Tong, Jian-Hua, Liao, Shu-Tao, Lin, Chao-Ching, “A New Elastic-Wave-Based Imaging Method for Scanning the Defects inside the Structure,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 54, No. 1, January, pp. 128-137(2007).
[36] 邱進隆,「以應力波與合成聚焦法掃描混擬土缺陷之骨材與邊界效應的數值模擬與實驗驗證」,碩士論文,中華大學土木工程研究所,新竹(2007)。
[37] 阮文彥,「以應力波與合成聚焦法掃瞄混凝土之鋼筋與缺陷效應的數值模擬與實驗驗證」,碩士論文,中華大學土木工程研究所,新竹(2007)。
[38] Sridharana, C., Muralidharana, A., Balasubramaniama, K. & Krishnamurthya, C. V., “A simulation study on the impact echo array technique,” Nondestructive Testing and Evaluation, Vol. 21, No. 3-4, pp. 123-140 (2006).
[39] Sridharana, C., Muralidharana, A., Balasubramaniama, K. & Krishnamurthya, C. V., “IMPACT ECHO ARRAY TECHNIQUE FOR CONCRETE,” AIP Conf. Proc. 894, pp. 1353-1360(2007).
[40] Shlivinski, A., Langenberg, K.J., “Defect imaging with elastic waves in inhommogeneous-anisotropic materials with composite geometries,” Ultrasonics 46: 89-104 (2007).
[41] Ferraro, Christopher C., Boyd, Andrew J., and Hamilton III, H.R., “Detection and Assessment of Structural Flaws in Concrete Bridges with NDT Methods,” Research in Nondestructive Evaluation, 18:179-192 (2007).
[42] Aggelis, D.G., Shiotani, T., “Repair evaluation of concrete cracks using surface and through-transmission wave measurements,” Cement & Concrete Composites 29 :700–711 (2007).
[43] Cheng, Chia-Chi, Cheng, Tao-Ming, Chiang, Chih-Hung, “Defect detection of concrete structures using both infrared thermography and elastic waves,” Automation in Construction 18:87–92 (2008).
[44] Algernon, D., Gräfe, B., Mielentz, F., Köhler, B., Schubert, F., “Imaging of the Elastic Wave Propagation in Concrete Using Scanning Techniques Application for Impact-Echo and Ultrasonic Echo Methods,” J Nondestruct Eval 27: 83–97 (2008).
[45] Li, Qiufeng, Jin Xinhong, Zhao, Min, Shi, Lihua, Shao, Zhixue, “Simulation on Improving Imaging Resolution of SAFT,” International Conference on Measuring Technology and Mechatronics Automation (2009).
[46] Liu, Pei-Ling, Yeh, Po-Liang, “Vertical spectral tomography of concrete structures based on impact echo depth spectra,” NDT&E International43(2010)45–53 (2010).
[47] Liu, Pei-Ling, Yeh, Po-Liang, “Spectral tomography of concrete structures based on impact echo depth spectra,” NDT&E International 44: 692–702 (2011).
[48] Tong, Jian-Hua, Chiu, Chin-Lung, Wang, Chung-Yue, “Improved Synthetic Aperture Focusing Technique by Hilbert-Huang Transform for Imaging Defects inside a Concrete Structure,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 57, No. 11, pp. 2512-2521 (2011).
[49] 童建樺,「彈性波混凝土品質檢測系統之研製與應用」,博士論文,國立臺灣大學應用力學研究所,台北(2001)。
[50] 方金壽,「暫態彈性波在混凝土品質與裂縫偵測之應用」,博士論文,國立臺灣大學應用力學研究所,台北(1996)。
[51] Huang, N.E., Shen, Z., Long, S.R., Wu, M. C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., and Liu, H.H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis,” Proc. R. Soc. Lond., Vol. A454, pp. 903–995(1998).
[52] Huang, N.E., Wu, M.L., Long, S.R., Shen, S.S., Qu W.D., Gloersen P., and Fan, K.L., “A confidence limit for the empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. Lond. A, Vol. 459, pp. 2317–2345(2003).
指導教授 王仲宇、童建樺
(Chung-Yue Wang、Jian-Hua Tong)
審核日期 2013-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明