博碩士論文 93541006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:52.14.17.240
姓名 王聖瑜(Sheng Yu Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 次微米銻砷化銦鎵基極雙異質接面雙極性電晶體製程技術發展與特性分析
(Fabrication and Characterization of Submicron InGaAsSb Base Heterojunction Bipolar Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 本論文的內容主要為(銻)砷化銦鎵基極異質接面雙極性電晶體(heterojunction bipolar transistor)的特性分析及次微米線寛元件的製程發展,為了發展兆赫茲磷化銦異質接面雙極性電晶體(THz InP based HBT),本實驗室分別就磊晶品質改善、結構設計以及元件尺寸微縮提出一系列的研究。在磊晶品質改善方面,我們首先發展銻砷化銦四元材料的成長技術,以固定V/III比及長成速率的方式,成長出具不同銻含量並匹配於磷化銦基板的銻砷化銦鎵塊材,並藉由銻砷化銦鎵的電洞遷移率、少數載子生命週期不易隨P-型(鈹)摻雜濃度上昇而快速下降的特殊性質,以提高摻濃度的方式改善P-型銻砷化銦鎵塊材片電阻較大的問題,使其片電阻可與銻砷化鎵及砷化銦鎵比擬。
結構設計上的發展,我們首先以具有第一型射-基接面與第二型集-基接面的InP/In0.48Ga0.52As0.89Sb0.11/InGaAs DHBT證實使用銻砷化銦鎵基極之異質接面雙極性電晶體除了直流上具有低導通電壓與高電流增益外,其操作電流與電流增益截止頻率皆優於傳統的砷化銦鎵基極異質接面雙極性電晶體。並以模擬軟體分析不同銻含量對於第二型集-基的影響,我們發現當銻含量約為25%至30%時,可得到最低的射-基、集-基導通電壓以及較佳的高頻特性。因此,我們針對較高銻含量之基極設計具有第一型射-基接面與第二型集-基接面的InAlAs/InGaAsSb/InGaAs DHBTs。實驗結果顯示,當銻含量增加,元件的電流增益與線性度有明顯的改善,基極特徵歐姆接觸電阻率可大幅度的降低,並且其表面復合電流(射極尺寸效應)亦遠低於目前泛用的砷化銦鎵異質接面雙極性電晶體。藉由國際合作,在基極厚度44nm、集極厚度為200 nm,射極尺寸為0.65×8.65 μm2時,在一銻含量為23%之InAlAs/In0.42Ga0.58As0.77Sb0.23/InGaAs DHBT其電流增益截止頻率與功率增益截止頻率分別可達260 GHz與485 GHz的良好特性。
在製程技術的發展,首先針對小尺寸元件的關鍵技術:射極與基極的特徵歐姆接觸電阻率的降低,以高摻雜的砷化銦/砷化銦鎵射極接觸層結構設計及高銻含量的銻砷化銦鎵材料,分別將射極與基極的特徵歐姆接觸電阻率降低至3.4×10-8 Ω-cm2與5×10-8 Ω-cm2;隨後,以電子束微影的技術,將射極金屬線寬降低至300奈米,並初步將元件的電流增益截止頻率與功率增益截止頻率提昇至272 GHz與176 GHz。此外,為了改善射極、基極平台蝕刻以及基極金屬自我對準良率的提昇,本實驗室提出獨有的T-型射極金屬與苯並環丁烯(BCB)平台側壁製作技術,解決了目前平台側壁製作時離子轟擊半導體表面的問題,同時發展出元件更進一步微縮時基極平台與基極金屬自我對準的重要技術。
在尺寸微縮的過程中我們發現相較於傳統的磷化銦/砷化銦鎵單異質接面雙極性電晶體,使用銻砷化銦鎵基極之異質接面雙極性電晶體其電流增益在射極尺寸效應(emitter size effects)較不明顯,隨著銻含量的增加、射極週圍表面復合電流密度(Emitter periphery surface recombination current density, KSURF) 亦隨著銻含量的增加而下降;我們亦觀察到在高基極摻雜下,射極尺寸效應可被進一步的抑制,由先前提到銻砷化銦鎵在高摻雜時其少數載子生命週期遠大於砷化砷錠及銻砷化鎵,因此,即便在次微米尺寸下,元件的電流增益仍可維持於一合理值(50)。
綜合結果,銻砷化銦鎵基極異質接面電晶體在高銻含量、高基極摻雜時,元件具有低導通電壓、高操作電流及高電流、高功率增益截止頻率的良好特性,並在尺寸微縮時,其電流增益亦不隨之犧牲,闡明銻砷化銦鎵基極之異質接面電晶體於追求兆赫茲頻寛的優勢。
摘要(英) In order to achieve THz InGaAsSb base heterojunction bipolar transistors we have focused our efforts on three research areas over the past few years, including the growth of high quality InGaAsSb, the design of the device layer structure, and the development of process technologies for sub-micron devices.
A method for growing high quality InGaAsSb material by fixing the V/III ratio and growth rate was developed first. By using this method we could control the Sb composition and make the InGaAsSb layer lattice-matched to InP substrate. Additionally, due to the special material properties of InGaAsSb, i.e., its hole mobility and carrier life time show little dependence on their base doping concentration, an InGaAsSb material with a high Sb composition (Sb>25%) and base doping concentration (NB>1×1020 cm-3) would exhibit a sheet resistance comparable to GaAsSb.
Utilizing the materials prepared by the aforementioned method, we demonstrated an InP/In0.48Ga0.52As0.89Sb0.11/InGaAs DHBTs with Type I E-B and type II B-C junctions. This was the first time that an InGaAsSb base HBT demonstrated a higher collector current and current gain cut-off frequency (fT) than a conventional SHBT. We also used a Silvoco simulation tool to study the Sb composition effect on a type II B-C structure. It was found that the lowest VBE and VBC turn-on voltage and highest current gain cut-off frequency could be achieved when the Sb composition was around 25% to 30%.
In order to further investigate the Sb composition effect while maintaining the benefits of type I B-E and type II B-C junctions, we designed a series of InAlAs/InGaAsSb/InGaAs HBTs. With these HBTs, we found that as the Sb composition increased, there was significant improvement in their current gain and linearity. It also resulted in low base specific contact resistivity, which led to a high maximum oscillation frequency (fmax). Through international collaboration with Professor Ran in UF (University of Florida), an InAlAs/In0.42Ga0.58As0.77Sb0.23/InGaAs HBT with an emitter size of 0.65×8.65 μm2 and base/collector thickness of 40nm and 150 nm, respectively, a fT of 260 GHz and fmax of 485 GHz were achieved.
In the area of submicron-meter HBT fabrication, we first investigated emitter and base contact resistivity issues, which are key factors for submicron-meter devices. Heavily doped InAs/InGaAs emitter structures and high Sb content InGaAsSb materials were used to lower the emitter and base contact resistivity. By these methods, emitter and base contact resistivity of 3.4×10-8 Ω-cm2 and 5×10-8 Ω-cm2 were achieved. After solving the contact issue, we used e-beam lithography to define devices with emitter sizes below 300 nm. The fT and fmax of the devices were 272 GHz and 176 GHz, respectively. In addition, in order to improve the yield of self-aligned emitter mesa and base metal, a unique T-shaped emitter and benzocyclobutene (BCB) mesa sidewall technology was invented. This allowed us to avoid the ion bombardment problem during mesa sidewall fabrication. This method was even better for fabricating severely scaled self-aligned emitter HBTs.
During the submicron-meter device fabrication procedure, it is found that the current gain in a HBT with an InGaAsSb base layer shows less dependence on the emitter size as compared to the InGaAs base HBTs. Moreover, as the Sb composition increases in the base layer, the emitter periphery surface recombination current density (KSURF) of an InGaAsSb base HBT becomes more and more insignificant. Additionally, the heavily doped InGaAsSb base HBT exhibits a weaker emitter size effect than a lightly doped one. This is considered a very important advantage of the InGaAsSb base HBTs. It is found that heavily doped InGaAsSb bases exhibit a long minority carrier life time, which leads to a decent current gain for an HBT. Current gains as high as 50 have been achieved with a 44nm InGaAsSb base when the base doping goes up to 1×1020 cm-3 in InGaAsSb base HBTs.
The dissertation shows that the InGaAsSb base HBTs with high Sb composition and base doping concentration exhibit low turn-on voltage, high current drive capability, high fT and high fmax. Meanwhile, this kind of HBT shows very weak emitter size effects in the scaled device. According to these superior characteristics, the InGaAsSb base HBTs show great potential for achieving THz HBT.
關鍵字(中) ★ 次微米製程技術
★ 銻砷化銦鎵基極
★ 異質接面雙極性電晶體
關鍵字(英) ★ Submicron technology
★ InGaAsSb base
★ Heterojunction bipolar transistors
論文目次 論文摘要 I
Abstract III
Contents VI
Table Captions VIII
Figure Captions IX
Chapter 1 Introduction 1
Chapter 2 InGaAsSb Base Type-II B-C junction HBTs 7
2-1 Why InGaASb/lnGaAs type II B-C junction 7
2-2 InGaAsSb materials 9
2-2-1 Band gap and band offset 9
2-2-2 Hole mobility 11
2-2-3 Specific contact resistivity 13
2-2-4 Minority carrier life time 16
2-3 InP/InGaAsSb/InGaAs DHBT 18
2-4 Base and collector transit time analysis of an InGaAsSb base HBT 25
2-5 Sb composition effect on Type-II B-C structure 35
2-6 InAlAs/InGaAsSb/InGaAs DHBT 44
Chapter 3 Fabrication and characterization of submicron-Meter width emitter HBTs 54
3-1 Introduction 54
3-2 Sub-micron meter Emitter metal fabrication 56
3-3 Emitter mesa fabrication 62
3-4 Base metallization and base mesa definition 64
3-5 Device performance 69
3-6 Challenges of submicron-meter InAlAs/InGaAsSb/InGaAs DHBT fabrication 73
3-6-1、Emitter mesa fabrication 73
3-6-2、Base mesa fabrication 75
Chapter 4 Emitter Size Effect Study of InGaAs(Sb) HBTs 83
4-1 Introduction 83
4-2 Investigation of Sb composition effect on surface recombination current of InAlAs/InGaAs(Sb)/InGaAs DHBTs 85
4-2 Emitter size effect study for the InP/InGaAs(Sb)/InGaAs DHBTs with different Sb composition and base doping concentration 97
Chapter 5 Conclusion 110
Reference 112
Appendix A 119
Publication list 128
參考文獻 [1] W. Hong and N. Geok Ing, "Electrical properties and transport mechanisms of InP/InGaAs HBTs operated at low temperature," IEEE Transactions on Electron Devices, vol. 48, pp. 1492-1497, 2001.
[2] E. Tokumitsu, A. G. Dentai, C. H. Joyner, and S. Chandrasekhar, "InP/InGaAs double heterojunction bipolar transistors grown by metalorganic vapor phase epitaxy with sulfur delta doping in the collector region," Applied Physics Letters, vol. 57, p. 2841, 1990.
[3] K. Yang, G. O. Munns, and G. I. Haddad, "High fmax InP double heterojunction bipolar transistors with chirped InGaAs/InP superlattice base-collector junction grown by CBE," IEEE Electron Device Letters, vol. 18, pp. 553-555, 1997.
[4] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, "Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors," IEEE Transactions on Electron Devices, vol. 41, pp. 1319-1326, 1994.
[5] C. R. Bolognesi, N. Matine, R. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, "Non-blocking collector InP/GaAs0.51Sb0.49/InP double heterojunction bipolar transistors with a staggered lineup base-collector junction," IEEE Electron Device Letters, vol. 20, pp. 155-157, 1999.
[6] M. W. Dvorak, C. R. Bolognesi, O. J. Pitts, and S. P. Watkins, "300 GHz InP/GaAsSb/InP double HBTs with high current capability and BVCEO ≧ 6 V," IEEE Electron Device Letters, vol. 22, pp. 361-363, 2001.
[7] H. G. Liu, S. P. Watkins, and C. R. Bolognesi, "15-nm base type-II InP/GaAsSb/InP DHBTs with FT=384 GHz and a 6-V BVCEO," IEEE Transactions on Electron Devices, vol. 53, pp. 559-561, 2006.
[8] W. Snodgrass, W. Bing-Ruey, K. Y. Cheng, and M. Feng, "Type-II GaAsSb/InP DHBTs with Record fT = 670 GHz and Simultaneous fT, fMAX > 400 GHz," in IEEE International Electron Devices Meeting, pp. 663-666, 2007.
[9] R. Lovblom, R. Fluckiger, Y. Zeng, O. Ostinelli, A. R. Alt, H. Benedickter, and C. R. Bolognesi, "InP/GaAsSb DHBTs With 500-GHz Maximum Oscillation Frequency," IEEE Electron Device Letters, vol. 32, pp. 629-631, 2011.
[10] H. G. Liu, N. Tao, S. P. Watkins, and C. R. Bolognesi, "Extraction of the Average Collector Velocity in High-Speed "Type-II" InP-GaAsSb-InP DHBTs," IEEE Electron Device Letters, vol. 25, pp. 769-771, 2004.
[11] S. P. Watkins, O. J. Pitts, C. Dale, X. G. Xu, M. W. Dvorak, N. Matine, and C. R. Bolognesi, "Heavily carbon-doped GaAsSb grown on InP for HBT applications," Journal of Crystal Growth, vol. 221, pp. 59-65, 2000.
[12] C. R. Bolognesi, N. Matine, R. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, "Non-blocking collector InP/GaAs0.51Sb0.49/InP double heterojunction bipolar transistors with a staggered lineup base-collector junction," IEEE Electron Device Letters, vol. 20, pp. 155-157, 1999.
[13] S. W. Cho, J. H. Yun, D. H. Jun, J. I. Song, I. Adesida, N. Pan, and J. H. Jang, "High performance InP/InAlAs/GaAsSb/InP double heterojunction bipolar transistors," Solid-State Electronics, vol. 50, pp. 902-907, 2006.
[14] H. G. Liu, O. Ostinelli, Y. P. Zeng, and C. R. Bolognesi, "Emitter-Size Effects and Ultimate Scalability of InP:GaInP/GaAsSb/InP DHBTs," IEEE Electron Device Letters, vol. 29, pp. 546-548, 2008.
[15] Y. Oda, H. Yokoyama, K. Kurishima, T. Kobayashi, N. Watanabe, and M. Uchida, "Improvement of current gain of C-doped GaAsSb-base heterojunction bipolar transistors by using an InAlP emitter," Applied Physics Letters, vol. 87, p. 023503, Jul 11 2005.
[16] Z. Xin, D. Pavlidis, and Z. Guangyuan, "First high-frequency and power demonstration of InGaAlAs/GaAsSb/InP double HBTs," Proc. Intl. Conf. Indium Phosphide and Related Materials, pp. 149-152, 2003.
[17] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, p. 5815, 2001.
[18] M. Feng and W. Snodgrass, "InP Pseudormorphic Heterojunction Bipolar Transistor (PHBT) With Ft > 750GHz," Proc. Intl. Conf. Indium Phosphide and Related Materials, pp. 399-402, May 2007.
[19] C. T. Kirk, "A theory of transistor cutoff frequency (fT) falloff at high current densities," IRE Transactions on Electron Devices, vol. 9, pp. 164-174, 1962.
[20] S. R. Forrest, P. H. Schmidt, R. B. Wilson, and M. L. Kaplan, "Relationship between the conduction-band discontinuities and band-gap differences of InGaAsP/InP heterojunctions," Applied Physics Letters, vol. 45, p. 1199, 1984.
[21] J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, "Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs and GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 73, p. 2799, 1998.
[22] M. Peter, N. Herres, F. Fuchs, K. Winkler, K. H. Bachem, and J. Wagner, "Band gaps and band offsets in strained GaAs1−ySby on InP grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 74, p. 410, 1999.
[23] C. R. Bolognesi, M. M. W. Dvorak, P. Yeo, X. G. Xu, and S. P. Watkins, "InP/GaAsSb/InP double HBTs: a new alternative for InP-based DHBTs," IEEE Transactions on Electron Devices, vol. 48, pp. 2631-2639, 2001.
[24] S. H. Chen, C. M. Chang, P. Y. Chiang, S. Y. Wang, W. H. Chang, and J.-I. Chyi, "DC Characteristics of InAlAs/InGaAsSb/InGaAs Double Heterojunction Bipolar Transistors," IEEE Transactions on Electron Devices, vol. 57, pp. 3327-3332, 2010.
[25] D. Vignaud, D. A. Yarekha, J. F. Lampin, M. Zaknoune, S. Godey, and F. Mollot, "Electron lifetime measurements of heavily C-doped InGaAs and GaAsSb as a function of the doping density," Applied Physics Letters, vol. 90, p. 242104, 2007.
[26] C. M. Chang, S. H. Chen, S. Y. Wang, and J.-I. Chyi, "Characterization of InAlAs/In0.25Ga0.75As0.72Sb0.28/InGaAs double heterojunction bipolar transistors," Proc. Intl. Conf. Indium Phosphide and Related Materials, pp. 1-4, 2010.
[27] W. Liu, Handbook of III-V of Heterojunction Bipolar Transistors: New York: Wiley-Interscience, 1998.
[28] G. Zohar, S. Cohen, V. Sidorov, A. Gavrilov, B. Sheinman, and D. Ritter, "Reduction of base-transit time of InP-GaInAs HBTs due to electron injection from an energy ramp and base-composition grading," IEEE Transactions on Electron Devices, vol. 51, pp. 658-662, 2004.
[29] K. Kurishima, H. Nakajima, S. Yamahata, T. Kobayashi, and Y. Matsuoka, "Effects of a Compositionally-Graded InxGa1-xAs Base in Abrupt-Emitter InP/InGaAs Heterojunction Bipolar Transistors," Japanese Journal of Applied Physics, vol. 34, pp. 1221-1227, 1995.
[30] H. Fukano, H. Nakajima, T. Ishibashi, Y. Takanashi, and M. Fujimoto, "Effect of hot-electron injection of high-frequency characteristics of abrupt In0.52(Ga1-xAlx)0.48As/InGaAs HBT’s," IEEE Transactions on Electron Devices, vol. 39, pp. 500-506, 1992.
[31] C. F. Lo, F. Ren, C. Y. Chang, S. J. Pearton, S. H. Chen, C. M. Chang, S. Y. Wang, J.-I. Chyi, and I. I. Kravchenko, "Fabrication of InAlAs/InGaAsSb/InGaAs double heterojunction bipolar transistors," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 29, p. 031205, 2011.
[32] V. Jain, E. Lobisser, A. Baraskar, B. J. Thibeault, M. J. W. Rodwell, Z. Griffith, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and W. K. Liu, "InGaAs/InP DHBTs in a Dry-Etched Refractory Metal Emitter Process Demonstrating Simultaneous fT/fmax ~ 430/800 GHz," IEEE Electron Device Letters, vol. 32, pp. 24-26, 2011.
[33] D. Yu, K. Choi, K. Lee, B. Kim, H. Zhu, K. Vargason, J. M. Kuo, P. Pinsukanjana, and Y. C. Kao, "Ultra high-speed 0.25-μm emitter InP-InGaAs SHBTs with fmax of 687 GHz," in IEEE International Electron Devices Meeting, pp. 557-560, 2004.
[34] R. F. Kopf, R. A. Hamm, R. W. Ryan, J. Burm, A. Tate, Y. K. Chen, G. Georgiou, D. V. Lang, and F. Ren, "Evaluation of encapsulation and passivation of InGaAs/InP DHBT devices for long-term reliability," Journal of Electronic Materials, vol. 27, pp. 954-960, 1998.
[35] S. Y. Wang, P. Y. Chiang, C. M. Chang, S. H. Chen, and J.-I. Chyi, "Low Surface Recombination in InAlAs/InGaAsSb/InGaAs Double Heterojunction Bipolar Transistors," IEEE Electron Device Letters, vol. 31, pp. 1401-1403, 2010.
[36] H. G. Liu, O. Ostinelli, Y. Zeng, and C. R. Bolognesi, "600 GHz InP/GaAsSb/InP DHBTs Grown by MOCVD with a Ga(As,Sb) Graded-Base and fT x BVCEO > 2.5 THz-V at Room Temperature," in IEEE International Electron Devices Meeting, pp. 667-670, 2007.
[37] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, "Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces," Applied Physics Letters, vol. 60, p. 371, 1992.
[38] N. G. M. Tao, H. Liu, and C. R. Bolognesi, "Surface Recombination Currents in "Type-II" NpN InP-GaAsSb&-InP Self-Aligned DHBTs," IEEE Transactions on Electron Devices, vol. 52, pp. 1061-1066, 2005.
[39] S. Tiwari, D. J. Frank, and S. L. Wright, "Surface recombination in GaAlAs/GaAs heterostructure bipolar transistors," Journal of Applied Physics, vol. 64, p. 5009, 1988.
[40] W. S. Lee, D. Ueda, T. Ma, Y. C. Pao, and J. S. Harris, "Effect of emitter-base spacing on the current gain of AlGaAs/GaAs heterojunction bipolar transistors," IEEE Electron Device Letters, vol. 10, pp. 200-202, 1989.
[41] N. Hayama and K. Honjo, "Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT’s with AlGaAs surface passivation layer," IEEE Electron Device Letters, vol. 11, pp. 388-390, 1990.
[42] Z. Jin, X. Liu, W. Prost, and F. J. Tegude, "Surface-recombination-free InGaAs/InP HBTs and the base contact recombination," Solid-State Electronics, vol. 52, pp. 1088-1091, 2008.
[43] Z. Jin, S. Neumann, W. Prost, and F. J. Tegude, "Surface recombination mechanism in graded-base InGaAs-InP HBTs," Electron Devices, IEEE Transactions on, vol. 51, pp. 1044-1045, 2004.
[44] N. Tao, H. G. Liu, and C. R. Bolognesi, "Emitter size effects and recombination at the emitter periphery in self-aligned InP/GaAsSb/InP DHBTs," Proc. Intl. Conf. Indium Phosphide and Related Materials, pp. 452-455, 2005.
[45] J. M. Langer and W. Walukiewicz, "Surface Recombination in Semiconductors," Materials Science Forum, vol. 196-201, pp. 1389-1394, 1995.
[46] C. W. Ng, H. Wang, and K. Radhakrishnan, "Surface Recombination in InP/InAlAs/GaAsSb/InP Double Heterojunction Bipolar Transistors," Proc. Intl. Conf. Indium Phosphide and Related Materials,pp. 151-153, 2007.
[47] A. Cavallini, B. Fraboni, and D. Cavalcoli, "Evaluation of diffusion length and surface recombination velocity in semiconductor devices by the method of moments," Journal of Applied Physics, vol. 71, p. 5964, 1992.
[48] S. H. Chen, K. H. Teng, H. Y. Chen, S. Y. Wang, and J.-I. Chyi, "Low Turn-On Voltage InP/In0.37Ga0.63As0.89Sb0.11/InGaAs and High-Current Double Heterojunction Bipolar Transistors," IEEE Electron Device Letters, vol. 29, pp. 655-657, 2008.
[49] N. Shamir, "Comparison of titanium and platinum Schottky barrier heights to Ga0.47In0.53As obtained from Franz Keldysh oscillations and Schottky diode characteristics," Solid-State Electronics, vol. 45, pp. 475-482, 2001.
[50] C. Bru-Chevallier, H. Chouaib, J. Arcamone, T. Benyattou, H. Lahreche, and P. Bove, "Photoreflectance spectroscopy for the study of GaAsSb/InP heterojunction bipolar transistors," Thin Solid Films, vol. 450, pp. 151-154, Feb 22 2004.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2013-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明