以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:231 、訪客IP:18.226.170.68
姓名 陳榮華(Rong-hua Chen) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 以離心模型模擬正斷層及逆斷層通過黏土地層引致的地表變形特性
(Centrifuge modeling of the surface deformation caused by normal and reverse faulting through clay stratum)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 斷層一旦發生錯動,強烈的地震波和地表永久變形,常讓鄰近斷層帶的結構物造成嚴重變形而導致破壞。但臺灣地狹人稠且維生線系統分佈範圍廣大,很難將所有結構物全面避開斷層帶。因此暸解斷層錯動的影響範圍及近地表變形之特性,是值得受到重視和研究的課題。
本研究利用離心模型試驗模擬正斷層與逆斷層錯動方式,以瞭解正斷層及逆斷層通過黏土層之影響範圍及變形特性。試驗土樣採用甘油與皂土混合而成的人工黏土,在試驗過程中甘油不易排出,極適合模擬斷層快速錯動時,地盤屬於不排水受剪的情形。
試驗結果顯示,正斷層引致的地表裂縫範圍隨著覆土層厚度增加而增加。但在相同的覆土層厚度條件下,正斷層引致的地表裂縫範圍,隨著覆土層的不排水剪力強度增加而減少。不論是覆土層經正斷層或逆斷層錯動後,在相同的覆土層厚度下,其地表陷落或抬昇範圍都與覆土層的不排水剪力強度呈負相關。由於複合土層為砂土層覆蓋黏土層,經斷層錯動後,近地表變形與純砂土層之變形相近。但複合土層在砂土與黏土的界面,黏土表面會產生階梯狀的變形。摘要(英) Strong seismic waves and permanent ground deformations induced by fault slip would lead to the serious damage of structures near the fault zone. It is very difficult to avoid the fault zone for the residential area and the lifeline systems, especially in Taiwan with high density of population. Therefore, it is an important issue to realize the influenced zone and the characteristics of ground deformation by fault slip.
In this study, a series of centrifuge modeling tests were conducted to simulate the normal and reverse faulting through clay layers and sand overlying on the clay to observe the influenced zone and characteristics of ground deformation. An artificial clay, Glyben, mixed with bentonite and glycerin was used as test soil. The Glyben is applicable to simulate the undrained condition of soil layer under the rapidly shear by fault slip because the glycerin was difficult to drain out during shearing.
According to the test results of normal fault, the range of surface cracks increases with the increasing thickness of overburden soil layer. With the same thickness of overburden soil layer, the range of surface cracks decreases with the increasing undrained shear strength of soil. For either the normal fault or the reverse fault, the ground surface deformation is negative proportional to the undrained shear strength of soil. However, the ground surface deformation of muti-layer soil, which consists of a clay soil at the bottom and a sand soil above, is close to that of sandy soil, and a step-shape deformation occurred at the interface of the sandy and clay layers.關鍵字(中) ★ 離心模型詴驗
★ 斷層
★ 人工黏土
★ 張力裂縫
★ 斷層跡關鍵字(英) ★ centrifuge modeling test
★ fault
★ Glyben
★ tension crack
★ fault rupture論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 xii
第一章 緒論 1
1-1研究動機與目的 1
1-2研究方法 2
1-3論文架構 2
第二章 文獻回顧 5
2-1活動斷層概述 5
2-1-1活動斷層定義與分類 5
2-1-2斷層種類 5
2-2現地調查 6
2-2-1國外案例 6
2-2-2國內案例 7
2-3物理模型試驗 8
2-3-1 1g模型試驗 8
2-3-2 1g模型與離心模型試驗 8
2-3-3離心模型試驗 9
2-4數值分析 10
2-5國內相關法規 11
2-6離心模型原理 12
2-6-1離心模型基本相似律 12
2-6-2離心模型試驗之模型模擬 15
2-7小結 15
第三章 試驗儀器、試驗土樣及試驗方法 31
3-1試驗儀器及相關設備 31
3-1-1地工離心機 31
3-1-2資料擷取系統 31
3-1-3斷層錯動模擬試驗箱 32
3-1-4地表剖面掃描台車 32
3-2試驗土樣及其基本性質 33
3-2-1人工黏土及其基本性質 33
3-2-2石英矽砂及其基本性質 33
3-3試驗方法與步驟 34
3-3-1試體床製作 34
3-3-2試驗流程 35
第四章 試驗結果與分析 56
4-1試驗條件 56
4-2升g過程造成的沉陷 57
4-3張力裂縫 57
4-3-1正斷層引致地表的張力裂縫 58
4-3-2逆斷層引致地表的張力裂縫 58
4-3-3綜合討論 59
4-4近地表變形行為 60
4-4-1正斷層錯動引致的近地表剖面變化 60
4-4-2正斷層錯動引致的近地表坡度變化 63
4-4-3逆斷層錯動引致的近地表剖面變化 64
4-4-4逆斷層錯動引致的近地表坡度變化 65
4-4-5綜合討論 65
4-5斷層跡的發展 68
4-5-1正斷層之斷層跡發展情形 69
4-5-2逆斷層之斷層跡發展情形 70
第五章 結論與建議 129
5-1結論 129
5-2建議 131
參考文獻 132參考文獻 1.Ahmed, W., and Bransby, M.F., “Interaction of shallow foundations with reverse faults,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.7, pp.914-924 (2009).
2.Anastasopoulos, I., Gazetas, G., Bransby, M.F., Davies, M.C.R., and Nahas, A.El., “Normal fault rupture interaction with strip foundations,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.3, pp.359-370 (2009).
3.Bransby, M.F., Davies, M.C.R., and Nahas, A.El., “Centrifuge modelling of normal fault-foundation interaction,” Bulletin of Earthquake Engineering, Vol.6, pp.585-605 (2008).
4.Bransby, M.F., Davies, M.C.R., Nahas, A.El., and Nagaoka, S., “Centrifuge modelling of reverse fault-foundation interaction,” Bulletin of Earthquake Engineering,Vol.6, pp.607-628 (2008).
5.Bray, J.D., Seed, R.B., Cluff, L.S., and Seed, H.B., “Earthquake fault rupture propogation through cohesive soil,”Journal of Geotechnical Engineering, Vol.120, pp.543-561 (1994).
6.Chang, Y.Y., Lee, C.J., Huang, W.J., Lin, M.L., Hung, W.Y., and Lin, Y.H., “Use of centrifuge experiments and discrete element analysis to model the reverse fault slip, ”International Journal of Civil Engineering, Transaction B : Geotechnical Engineering,accepted(2013)
7.Faccioli, E., Anastasopoulos, I., Gazetas, G., Callerio, A., and Paolucci, R., “Fault rupture - foundation interaction : selected case histories,” Bulletin of Earthquake Engineering,Vol.6, pp.557-583 (2008).
8. Kelson, K.I., Harder, L.F., Kishida, T and Ryder, I., “Preliminary observation of surface fault rupture from the April 11,2011 Mw6.6 Hamadoori earquake, Japen,”GERR Report, Japan., No.GERR-025d, pp.1-22 (2011).
9.Kelson, K.I., Kang, K.H., Page, W.D., Lee. C.T., and Cluff, L.S., “Representative styles of deformation along the Chelungpu Fault from the 1999 Chi-Chi(Taiwan) earthquake: Geomorphic charateristics and response of man-made structures,” Bulletin of the Seismological Society of America, Vol.91, No.5, pp.930-952 (2001).
10.Lee, J.W., Hamada, M., Tabuchi, G., and Suzuki, K., “Prediction of fault rupture propagation based on physical model tests in sandy soil deposit,” Proceedings of the thirteenth World Conference on Earthquake Engineering, Vancouver, Canada (2004).
11.Ng, C.W.W., Cai, Q.P., and Hu, P., “Centrifuge and numerical modeling of normal fault-rupture propagation in clay with and without a preexisting fracture,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.138, No.12, pp.1492-1502 (2012).
12.Rayhani, M.H.T., and El Naggar, M.H., “Characterization of glyben for seismic applications,” Geotechnical Testing Journal, ASTM, Vol.31, No.1, pp.24-31 (2007).
13.Stone, K.J.L., and Wood, D.M., “Effects of dilatancy and particle size observed in model tests on sand,” Soil and Foundations, Vol.32, No.4, pp.43-57 (1992).
14.Turan, A., Hinchberger, S.D., and El Naggar, M.H., “Mechanical characterization of an artificial clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.2, pp.280-290 (2009).
15.李錫堤、康耿豪、鄭錦桐、廖啟雯,「921集集大地震之地表破裂及地盤變形現象」,地工技術,第81期,第5-16頁 (2000)。
16.鍾春富、林銘朗、鄭富書,「逆斷層作用引致上覆土層變形行為及其對淺基礎之影響」,臺灣礦業,第59卷,第3期,第4-29頁 (2007)。
17.鍾春富、林銘郎、鄭富書、王景平、姚大鈞,「逆斷層斷盤引致上覆土層變形行為探討」,經濟部中央地質調查所特刊,第十六號,第91-108頁 (2005)。
18.洪汶宜、張有毅、陳婷、李崇正、黃文昭、黃文正、林銘郎、林燕慧,「逆斷層引致近地表變形之離心模擬」,2012岩盤工程研討會,苗栗,(2012)。
19.連永旺,「大地裂痕-空中鳥瞰車籠埔斷層」,飛虎文化事業有限公司,台北,(2012)。
20.李崇正,「模型試驗在大地工程教學的應用」,中國土木水利工程學刊,第30卷,第4期,第89-92頁 (2003)。指導教授 李崇正(Chung-Jung Lee) 審核日期 2013-8-13 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare