以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:223 、訪客IP:52.14.17.240
姓名 詹前烜(Chien-Chuan Chan) 查詢紙本館藏 畢業系所 大氣物理研究所 論文名稱 利用 WRF 模式模擬探討熱力條件對台灣東部海面對流線之影響
(Numerical investigation of thermodynamic effects on the formation of the convective lines off the eastern coast of Taiwan)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在弱綜觀且較穩定的環境條件下,常可觀測到平行海岸線的對流雨帶在東部海岸生成。在前人的研究中,其分類大致可分為近岸型和離岸型兩種:在沿岸地區有陸風向外與盛行風輻合,為近岸對流線的形成原因(Yu and Jou 2005)。而盛行風受地形阻擋,激發地形回流、地形繞流或地形阻擋噴流並與盛行風輻合,為離岸對流線的主要成因(Yu and Hsieh 2009;Alpers et al 2010)。對流線的整體強度和離岸距離則與台灣的地形高度和坡度相關(蔡 2012)。但過去的研究多著重在地形效應造成動力上的輻合,有關熱力條件的對對流線的影響,過去僅Yu and Hsieh (2009)的研究中提及高海溫的黑潮其海氣交互作用在此區域的可能影響,然而因海面上觀測資料的缺乏,未能有效的進行分析。
本篇研究選取2012/02/01宜蘭外海的雙對流線個案,該個案依發展特性共可分四個時期。其中在第二期時對流線有羽狀回波帶結構向外海延伸,在第三期時,海面上同時有近岸對流線和離岸對流線同時存在,在過去對流線個案研究中較少見到類似的特徵。由於海面上的觀測資料不足,故使用WRF3.3.1模式模擬此個案。模式結果顯示:對流線發生時,環境盛行風在對流線北段為東北風,南段的風場在開始時為東北風,之後轉為偏東風,並與台灣地形產生作用生成地形繞流與地形阻擋噴流,並與更東側的入流風場輻合激發離岸對流線生成,入流風場間的水平風向轉換則形成羽狀回波帶。而在第三期時,東北季風開始增強,在台灣東北部沿著海岸形成一道地形分流與環境東北風入流風場輻合形成內對流線,此外在剖面分析中可以發現陸風在其中也有參與作用,使得沿岸的強風帶無法進入蘭陽平原,令內對流線在海岸生成。隨著東北季風進一步增強,對流線向東南外海推進,最後消散。
本研究共設計了三種敏感度實驗:地形高度降低、熱通量關閉實驗、改變海溫測試。在地形減半的測試下,前兩期的可見到對流線回波範圍明顯減弱,且離岸距離縮短,顯示地形效應對入流風場產生阻擋效應,然而後兩期的結果,對流線的位置及強度則變化不大。將地形降低至零時,在對流線發展的末期由東北季風輻合形成一道對流線,但對流線的位置與台灣地形無關。故地形敏感度實驗結果顯示台灣地形使東北季風分流,改變對流線發展方向。在關閉可感熱通量時,宜蘭區域的陸風消失,內對流線延遲生成,整體對流強度則因底層潛在不穩定度下降而減弱。而在海溫測試中,海溫降低時,海面上的不穩定度降低而使得對流線強度減弱,其發展位置也較為近岸,而改變海溫分佈也會改變對流線整體的發展形勢。熱力敏感度實驗在針對其它的對流線個案研究海溫的影響也有相同的結果,故總合熱力敏感度實驗結果,海面的熱力通量在對流線的生成與發展過程中扮演著有利對流線生成之角色。摘要(英) Under weakly and relatively stable synoptic weather conditions, convective lines can be observed by radar observation at east coast of Taiwan, which orientation are usually parallel with the coast line. In previous studies, the convective lines can be divided into nearshore and offshore type. The nearshore type mainly cause by land breeze convergence with prevail wind (Yu and Jou 2005). The prevail wind blocked by steep terrain, generate terrain return flow, terrain split flow and barrier jet. Which converge with prevail wind induced offshore convective lines(Yu and Hsieh 2009;Alpers et al 2010). The intensity and offshore distance of convective lines are related with terrain height and slope. However, the previous studies are focus in dynamic mechanism by topographic effect, but rarely discuss the thermodynamic effect like air-sea interaction by Kuroshio’s high SST (Yu and Hsieh 2009).
This study selected a dual convective lines case which forming off the coast of Yilan in 2012/02/01. This case can be separate with 4 stages and has many features rarely seen in the past case studies like: feathery like structure extending seaward in stage 2, nearshore and offshore type of convective line exist in same time in stage 3. Since insufficient observations over ocean, we use WRF 3.3.1 model to simulate this case. Model results show that prevail winds of convective line were northeasterly in formative stage, and northeasterly change to easterly respectively at southern part of convective line. These prevail wind interacted with the Central Mountain Range (CMR) and induced terrain split flow and barrier jet. Which converged with prevail wind induced offshore convective line. The locally horizontal wind direction changes and converged with prevail winds induced the feathery like structure. In stage 3, the northeasterly monsoon strengthened and split by northeast part of Taiwan terrain. A strong wind belt along eastern coast converged with northeasterly inflow to induce the nearshore convective line. The cross-section analysis indicated the land breeze making the northeasterly monsoon inaccessible to the Yilan plain, help the convective line forming at coast. With the northeasterly monsoon further enhanced, the nearshore convective line moved to the southeast offshore, and finally dissipated.
This study design three of sensitivity experiments: terrain height reduced, heat flux test and SST change. In terrain height reduced experiment, the intensity and offshore distance of convective line reduced by setting the terrain height half in stage 1 and stage 2. This shows the topography blocking the inflow. But in the stage 3 and stage 4, the intensity and offshore distance of convective line did not change so much in half terrain experiment. By set the terrain height to 0, we can see the northeasterly monsoon converged with easterly flow in stage 3 and stage 4, but the convective line did not form along coast. This shows that topography affects the northeasterly monsoon and resulted in flow splitting and changes the orientation of convective line. If we turn off the sensible heat flux, the land breeze disappeared and the nearshore convective line did not form in stage 3, then the intensity of convective line weakened because of potential instability had been reduced. When reduce SST, the convective lines weakened because of the convective instability reduced. The SST distribution will also change the formation and development of convective line. Summery these results, the sensible heat flux of sea surface associated with high SST of Kuroshio play an important role for the formation and development of convective lines.關鍵字(中) ★ 海氣交互作用
★ 地形效應
★ 海陸風關鍵字(英) ★ atmosphere-ocean interaction
★ orographic effect
★ land-sea breeze論文目次 摘要 I
致謝 V
第一章 序論 1
1-1 前言與前人研究 1
1-2 研究動機 3
第二章 觀測資料與研究方法 5
2-1本研究使用資料 5
2-2 模式簡介 6
2-3 模式設定 7
2-4 實驗設計 9
第三章 個案分析與模式結果討論 12
3-1個案介紹及綜觀環境分析 12
3-2模式結果分析 16
第四章 敏感度實驗結果分析 20
4-1地形敏感度實驗 20
4-2海溫敏感度實驗 21
4-2-1海溫降低1℃ 21
4-2-2海溫降低3℃ 22
4-2-3不加入RTG SST海溫資料 23
4-3熱力敏感度實驗 24
4-4過去個案的實驗比較 25
4-4-1地形噴流個案 25
4-4-2海陸風個案 26
第五章 結論與未來展望 28
5-1結論 28
5-2未來展望 29
第六章 參考文獻 31
附表 35
附圖 37參考文獻 林哲佑,2007 :台灣東南沿海對流線雷達觀測之氣候特徵分析。私立中國文化大
學地學研究所大氣科學組碩士論文。
許郁卿,2011,土地利用型態對地表能量收支與海陸風模擬的影響。國立中央大
學大氣物理研究所碩士論文。
黃偉銘,2007:台灣東南方近海線狀對流之個案模擬。私立中國文化大學地學研
究所大氣科學組碩士論文。
蔡宗樺,2012: 利用WRF模式探討台灣東部海上對流線之個案研究。國立中央大
學大氣物理研究所碩士論文。
Alpers, W., J, -P Chen, I. –I. Lin, and C. -C Lin, 2006: Atmospheric fronts along the east coast of Taiwan studied by ERS synthetic aperture radar images. Mon. Wea. Rev., 64, 922-937.
Alpers, W., J.-P. Chen, C. -J. PI, and I. -I. Lin 2010: On the Origin of Atmospheric Frontal Lines off the East Coast of Taiwan Observed on Spaceborne Synthetic Aperture Radar Images. Mon. Wea. Rev., 138 , 475-496.
Banta, R. M., 1990 : The role of mountain flows in making clouds. Atmospheric P
rocesses over Complex Terrain, Meteor. Monogr., No.45, Amer. Meteor. Soc.,
229-284.
Carbone, R. E., J. W. Wilson, T. D. Keenan, and J. M. Hacker, 2000: Tropical island convection in the absence of significant topography. Part I: Life cycle of diurnally forced convection. Mon. Wea. Rev., 128, 3459–3480.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
Chen, C.-S., W. –S. Chen, and Z. –S. Deng, 1991 : A study of a mountain-generated precipitation system in northern Taiwan during TAMEX IOP 8. Mon. Wea. Rev., 131, 1323-1341.
Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.
Chien, F.-C., and Y. –H. Kuo, 2006 : Topographic Effects on a Wintertime Cold Front in Taiwan. Mon. Wea. Rev., 134, 3297-3316.
Chen, Y. L., & Feng, J. (2001). Numerical Simulations of Airflow and Cloud Distributions over the Windward Side of the Island of Hawaii. Part I: The Effects of Trade Wind Inversion*. Mon. Wea. Rev., 129, 1117-1134.
Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107.
Frye, J. L., and Y.-L. Chen, 2001: Evolution of downslope flow under strong opposing trade winds and frequent trade-wind rain-showers over the Island of Hawaii. Mon. Wea. Rev., 129, 956–977.
Hunt, J. C. R., & Snyder, W. H. (1980). Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid. Mech., 96, 671-704.
Hong, S. Y., & Pan, H. L. (1996). Nonlocal boundary layer vertical diffusion in a medium -range forecast model. Mon. Wea. Rev., 124, 2322-2339.
Hong, S. Y., Dudhia, J., & Chen, S. H. (2004). A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120.
Kain, J. S., & Fritsch, J. M. (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784-2802.
Kain, J. S. (2004). The Kain-Fritsch convective parameterization: an update. J. Appl. Meteor., 43, 170-181.
Kerns, B., Y.-L. Chen and M.-Y. Chang 2010: The diurnal cycle of winds, rain and clouds over Taiwan during the Mei-Yu, Summer, and Autumn regimes. Mon. Wea. Rev. 138, 497-516.
Li, J., and Y.-L. Chen, 1998: Barrier jets during TAMEX. Mon. Wea. Rev., 126, 959-971.
Lin, P.-L., Y.-L. Chen, C.-S. Chen, C.-L. Liu, and C.-Y. Chen, 2011: Numerical experiments investigating the orographic effects on a heavy rainfall event over the northwestern coast of Taiwan during TAMEX IOP 13. Meteorol Atmos Phys, 114, 35-50.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663-16.
Murphy, M J., and S. Businger, 2011: Orographic Influences on an Oahu Flood . Mon. Wea. Rev., 139, 2198-2217.
Overland, J. E., and N. A. Bond, 1995 : Observations and Scale analysis of coastal wind jet. Mon. Wea. Rev., 123, 2934-2941.
Roeloffzen, J. C., W. D. Van Den Berg, and J. Oerlemans, 1986: Frictional convergence at coastlines. Tellus, 38A, 397–411.
Smolarkiewicz, P. R., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands : Island forcing. J. Atmos. Sci., 45, 1872-1905.
Wang, C. -C, Chen, G. T. -J., T. -C. Chen, and K. Tsuboki, 2005: A numerical study on the effects of Taiwan topography on a convective line during the Mei-yu season. Mon. Wea. Rev., 133, 3217-3242.
Yang, Y., and Y.-L. Chen, 2008: Effects of terrain heights and sizes on island-scale circulations and rainfall for the island of Hawaii during HaRP. Mon. Wea. Rev. 136, 120-146.
Yeh, H. -C., and Y. -L. Chen, 1998 : Characteristic of rainfall distribution over Taiwan during TAMEX. J. Appl. Meteor., 37, 1457-1469.
Yeh, H. -C., and Y. -L. Chen, 2002 : The role of offshore convergence on coastal rainfall during TAMEX IOP 3. Mon. Wea. Rev., 130, 2709-2730.
Yu, C. -K., and B. J. -D. Jou, 2005: Radar observation of diurnally forced, offshore convective lines along the southeastern coast of Taiwan. Mon. Wea. Rev., 133,1613-1636.
Yu, C. -K., and C. -Y. Lin, 2008 : Statistical location and timing of the convective Lines off the mountainous coast of southeastern Taiwan from long-term radar observations. Mon .Wea. Rev., 136, 5077-5094.
Yu, C. -K., and Y. -H. Hsieh,2009: Formation of the convective Lines off the mountainous coast of southeastern Taiwan : A case study of 3 January 2004. Mon. Wea. Rev., 137, 3072-3091.
Zhang, Y., Y.-L. Chen, T. A. Schroeder, and K. Kodama, 2005: Numerical simulations of sea breeze circulations over northwest Hawaii. Wea. Forecasting , 20, 827-846.指導教授 林沛練(Pay-Liam Lin) 審核日期 2013-8-28 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare