博碩士論文 100621017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:18.119.106.211
姓名 陳盈臻(Ying-jhen Chen)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 台灣北部鋒面強降水個案之雨滴粒徑觀測比較研究
(Comparison Studies on the Observation of Raindrop Size Distribution in Strong Precipitation Frontal Case in Northern Taiwan)
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 2012年6月11日晚間一道結構完整的梅雨鋒面通過北台灣,劇烈降水造成多處地區發生災情。為了瞭解此個案的降雨特徵,本研究利用中央大學觀測坪的JWD、Parsivel和2DVD,以及北部雨滴譜儀觀測網:翡翠、南港、霞雲站的JWD觀測資料進行此個案的雨滴粒徑分布(DSD)分析比較,並配合雨滴譜儀資料成功蒐集的時間將本研究分成弱降水時期、強降水時期和完整個案時期進行討論。

弱降水時期主要比較JWD、2DVD和Parsivel等三種雨滴譜儀的觀測特性。根據比較結果顯示,三種儀器無論是在DSD或降雨率的表現都具有非常好的一致性,也確認在強降水發生之前,這三種儀器觀測結果都非常相似。強降水時期比較JWD和Parsivel在強降水時期的觀測分析。Parsivel在強降水時中大雨滴容易會有高估的情況發生,是因為Parsivel的儀器限制導致雨滴誤判。比較DSD時序變化和降雨率趨勢,Parisivel的表現較為一致,JWD卻完全沒有抓到最大雨發生的特徵。降雨率方面,JWD和Parsivel觀測的降雨量和10米塔附設傾斗式雨量計的雨量變化趨勢一致,但是雨量上卻存在很大的落差,有可能是雨滴譜儀在強降水情況下的觀測限制所造成。
完整個案時期比較同一時間北部其他JWD測站的觀測資料。根據分析結果顯示,三台外站JWD計算的降雨量和鄰近自動雨量站的觀測結果差異不大。霞雲站在弱降水的情況下小雨滴濃度最高;但是在強降水的情況下最低。翡翠和南港站的DSD變化則非常類似。中央站的JWD觀測到最大的雨滴粒徑比其他站都小,且中大雨滴濃度都比其他站來的高。最後是分別利用五分山S波段雷達的Z-R關係式,以及中央大學C-Pol雷達的K_DP-R關係式進行降水估計。根據比較結果,中央站由於雨滴譜儀的雨量和實際的降水有落差存在,所以利用Z-R關係式估計的降水表現最差。因此在使用雨滴譜儀校驗雷達降水時,雨滴譜儀的觀測表現應該先經過測試才能確保雷達降水校驗的準確性。
摘要(英) In the nighttime of 11th June 2012, a mature Mai-Yu front passed through the northern Taiwan. The extreme rainfall event caused multiple areas flooding. In order to investigate the characteristic of drop size distribution (DSD) accompanied with this heavy rainfall event, we used JWD, Parsivel and 2DVD collocated at NCU, and three JWDs in FeiCui, NanGang and XiaYung to investigate the frontal precipitation. In order to get the complete data, my discussion is organized as follows: Part 1 is focused on the weak precipitation period. Part 2 is focused on the strong precipitation period. Part 3 is the whole period as the front passing through the northen Taiwan.
In the weak precipitation period, we made sure that before the strong precipitation happens, the three type disdrometers (JWD, 2DVD and Parsivel) operate consistently.During strong precipitation period, a significant DSD variation characteristic had been found. Due to the limitation of instrument, Parsivel tended to overestimate the concentration of medium to large drops in the strong rainfall intensity. Comparing the rain drops concentration with the rain rate varies with time, Parsivel showed a good agreement but JWD even did not get the most significant characteristic as the strongest rainfall occurred. The rain rates of JWD and Parsivel varied in the same trend, but compared the rain rates with the rain gauge observation in the 10 m tower at NCU, both of them showed obvious underestimation. We suspected the limitation of instrument made the rain rate underestimated.
We analyzed whole two days’ data of JWD at FeiCui, NanGang and XiaYung on 11th-12th June 2012. The accumulated rainrates of these three stations were similar to the tipping buckets nearby. For the DSD variation, we found the concentration of small raindrops at XiaYung was the most in weak precipitation period but the least in strong precipitation. The DSD variations of FeiCui were similar to NanGang. The largest size of the raindrop detected at NCU was the smallest but the concentration is the highest amont the four JWD stations.
For quantitative precipitation estimation (QPE) of radar, we used the WuFenShan radar data and disdrimeter data to estimate the rain rates based on the Z-R relationship. We also used the C-Pol radar data of NCU to estimate the rain rates based on the K_DP-R relationship. According to the analysis results, the K_DP-R relationship showed a good proformance on the rain rate estimation. The reflactivity of the WuFenShan radar needed to add 3 dBZ for the better rain rate estimation. Besides, the rain rate estimation showed the worst result at the station of NCU. The reason was the rain rate of disdromters underestimated seriously so the performance of the Z-R relationship was bad. To avoid these bad results happening again, we should confirm the disdrometer shows consistency well with tipping buckets before we use the disdromter data.
關鍵字(中) ★ 雨滴粒徑分布 關鍵字(英) ★ Raindrop Size Distribution
論文目次 摘要 ii
ABSTRACT iii
致謝 v
目錄 vi
表目錄 viii
圖目錄 ix
一、緒論 1
1-1前言 1
1-2文獻回顧 1
1-3個案介紹及研究動機 6
二、資料來源與分析方法 8
2-1資料來源 8
2-2儀器介紹 9
2-2-1撞擊式雨滴譜儀(JWD) 9
2-2-2一維雷射光學式雨滴譜儀(Parsivel) 9
2-2-3第三代二維影像光學式雨滴譜儀(2DVD) 10
2-3雨滴粒徑分布計算 11
2-3-1撞擊式雨滴譜儀 (JWD) 11
2-3-2一維雷射光學式雨滴譜儀 (Parsivel) 11
2-3-3二維影像光學式雨滴譜儀 (2DVD) 12
2-4 Gamma DSD之計算 12
2-6 Z-R關係式 15
2-7層狀與對流降水型態的分類方法 16
三、雨滴譜儀資料品質管制 18
3-1 降雨率QC 18
3-2 雨滴落速QC 19
3-3 Dead Time 效應討論 21
四、雨滴粒徑分布特性分析與比較 23
4-1弱降水時期(中央站) 23
4-2強降水時期(中央站) 25
4-3完整個案時期(翡翠、南港和霞雲站) 30
五、結論與未來展望 40
5-1 結論 40
5-1-1 弱降水時期(中央站) 40
5-1-2 強降水時期(中央站) 41
5-1-3 完整個案時期(翡翠、南港和霞雲站) 42
5-2 未來展望 45
參考文獻 46
表 50
圖 58
參考文獻 張偉裕,2002:「利用雨滴譜儀分析雨滴粒徑分布(納莉颱風個案)」,國立中央大學碩士論文,95頁。
林位總,2004:「利用二維雨滴譜儀研究雨滴譜特性」,國立中央大學碩士論文,89頁。
紀博庭,2005「利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率法的研究」,國立中央大學碩士論文,70頁
許玉金,2005:「台灣北部地區雨滴粒徑分布特性與降雨估計之探討」,國立中央大學碩士論文,89頁。
簡巧菱,2006:「台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性」,國立中央大學碩士論文,119頁。
吳舜華,2006:「利用雨滴譜儀分析不同降水系統之為物理特徵研究」,國立中央大學碩士論文,100頁。
毛又玉,2007:「台灣北部地區層狀與對流降水的雨滴粒徑分布特性」,國立中央大學碩士論文,101頁。
陳奕如,2009:「SoWMEX 實驗期間雨滴粒徑分佈特性之研究」,國立中央大學碩士論文,99頁。
陳姿瑾,2009:「西南氣流實驗之雨滴譜分析研究」,國立台灣大學碩士論文,87頁。
蔣育真,2010:「2009年台灣梅雨季雨滴粒徑分佈特性之比較研究」,國立中央大學碩士論文,107頁。
盧又嘉,2012:「颱風侵台期間雨滴粒徑之觀測研究」,國立中央大學碩士論文,85頁。
游政谷與謝佩蓉,2013:近地面降水粒子落速之觀測研究。國科會自然科學簡訊,25,4-9。
Atlas, D., and C W. Ulbrich, 1977:Path-and area-integrated rainfall measurement by microwave attenuation in the 1-3cm band. J. Appl.Meteor., 16, 1322-1331.
Beard, K. V., D. B. Johnson, and D. Baumgardner, 1986: Aircraft observations of large 741 raindrops in warm, shallow, convective clouds. Geophys. Resea. Lett., 13, 991-994.
Brandes, E., G. Zhang, and J. Vivekanandan, 2002: An evaluation of a drop distribution-based polarimetric radar rainfall estimator. Journal of Applied Meteorology, 42, 652-660
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, M. Schoenhuber, 2003: Raindrop Size Distribution in Different Climatic egimes from Disdrometer and Dual-Polarized Radar Analysis. J. Atmos. ci., 60, 354–365.
Chang, Wei-Yu, Tai-Chi Chen Wang, Pay-Liam Lin, 2009: Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. J. Atmos. Oceanic Technol., 26, 1973–1993.
Churchill, D. D., and R. A. Houze, Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933-960.
Feingold, Graham, and Zev Levin, 1986: The Lognormal Fit to Raindrop Spectra from Frontal Convective Clouds in Israel. J. Climate Appl. Meteor., 25, 346–1363.
Gamache, J. F., and R. A. Houze, Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118-135.
Gunn, R. and G. D. Kinzer, 1949:The terminal velocity of fall for droplets in stagnant air. J. Meter., 6, 243-248.
Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196.
Kozu, Toshiaki, and Kenji Nakamura, 1991: Rainfall Parameter Estimation from Dual-Radar Measurements Combining Reflectivity Profile and Path-integrated Attenuation. J. Atmos. Oceanic Technol., 8, 259–270.
Marshall, J. S. and Palmer, W. M. K., 1948: The distribution of raindrops with size, J. Meteor., 5, 165–166.
Sauvageot, H., and J. P. Lacaux, 1995:The Shape of Averaged Drop Size Distributions. J. Atmos. Sci., 52, 1070-1083.
Testud, Jacques, Stéphane Oury, Robert A. Black, Paul Amayenc, Xiankang Dou, 2001: The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. J. Appl. Meteor., 40, 1118–1140.
Tokay, Ali, and David A. Short, 1996: Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds. J. Appl. Meteor., 35, 355–371.
____, Ali, David A. Short, Christopher R. Williams, Warner L. Ecklund, Kenneth S. Gage, 1999: Tropical Rainfall Associated with Convective and Stratiform Clouds: Intercomparison of Disdrometer and Profiler Measurements. J. Appl. Meteor., 38, 302–320.
____, A., W. Petersen, P. Gatlin, and M. Wingo, 2013: Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers. J. Atmos. Oceanic Technol. doi:10.1175/JTECH-D-12-00163.1, in press.
Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop Size distribution, J. Appl. Meteorol., 22, 1764–1775.
Waldvogel, A., 1974: The N0 Jump of Raindrop Spectra. J. Atmos. Sci., 31, 1067–1078.
指導教授 林沛練(Pay-liam Lin) 審核日期 2013-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明