以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:178 、訪客IP:18.224.69.44
姓名 徐嘉仁(Chia-Jen Hsu) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 New RC之T形斷面梁澆鑄介面對耐震行為影響
(The Effect of Precast Cold Joint on the Seismic Behavior of New RC Cantilever T-beams)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究主要是以新型高拉力鋼筋與高強度混凝土材料所製成之New RC T形懸臂梁(a/d=2.4)試體,利用反覆加載實驗來探討存有預鑄施工縫的試體與一體成形的試體在耐震行為上的差異。其中,試體主筋使用#8高拉力SD685MPa螺紋節鋼筋搭配高強度混凝土(60MPa),梁箍筋按規範ACI 318-11耐震設計規定作配置,採用#4高拉力SD785MPa竹節鋼筋。文中除了探討預鑄施工縫在耐震行為影響外,亦探討目前規範與學者之交接面剪應力經驗式在耐震影響之適用性。
由實驗結果得知,存有施工縫的T形梁試體,其整體耐震行為與單一澆鑄T形梁試體相似;但在極限狀態負彎矩有效版寬(即版筋貢獻)調查,存有施工縫的T形梁有效版寬反而大於單一澆鑄試體1.4倍,其結果與先前普通鋼筋混凝土T形懸臂梁耐震測試[2]一樣。各國學者提出的經驗式[7、8、10]與實驗結果相似,而規範經驗式[3、4、5、6]則較保守。摘要(英) The main objective of the study was to investigate the effect of precast cold joint formed between slab underside and beam web on the seismic behavior of New RC cantilever T-section beams. Two RC short cantilever T-beams (a/d=2.4) were fabricated using ultra-high-strength steel reinforcement (SD685MPa #8 screwed type for main bars, and SD785MPa #4 deformed type for stirrups) and 60MPa high strength concrete. One beam with cold joint and the other beam without cold joint were tested under cyclic loading to observe the difference of seismic performance due to the formation of precast cold joint. Meanwhile, the assess results from empirical equations of frictional shear provided by design codes and previous researches were compared with the test results.
According to experimental results, the overall seismic behavior of the New RC T-beam with precast cold joint resembled the T-beam cast monolithically. However, the effective slab width in negative moment (i.e. the contribution of slab bars) for the beam with cold joint is 1.4 times wider than that for the beam cast monolithically, which is the same conclusion as obtained from the experimental study on the normal RC cantilever T-beams[2]. The values predicted from the equations proposed by the previous researchers [7、8、10] agreed the experimental results well. The assessment attained from code’s equations [3、4、5、6] showed conservative as expected.關鍵字(中) ★ 預鑄施工
★ T形梁
★ 高拉力鋼筋
★ 耐震行為
★ 交接面剪應力關鍵字(英) ★ precast
★ cantilever T-beams
★ ultra-high-strength steel reinforcement
★ seismic behavior
★ frictional shear stress論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的及方法 1
第二章 文獻回顧 3
2.1 現有規範對剪力摩擦筋之規定 3
2.1.1 規範ACI 318-11[3]剪力摩擦設計法 3
2.1.2 規範CAN/CSA-A23.3-04[5]交接面剪力傳遞 6
2.1.3 規範NZS 3101-2006[6]剪力摩擦設計 8
2.2 學者推導剪力摩擦之理論背景及經驗公式 9
2.2.1 Loov等人[7]所提出之經驗式 9
2.2.2 Kahn等人[8]所提出之經驗式 12
2.2.3 Kahn等人[9]比較其他學者提出之經驗公式 13
2.2.4 Ali等人[10]所提出經驗公式 13
2.3 反覆加載行為研究 15
2.3.1 Ehsani等人[11]實驗結果 15
2.3.2 Fang等人[12]實驗結果 16
2.4 預鑄橋樑設計不良案例 16
第三章 實驗規劃與步驟 18
3.1 試體規劃 18
3.2 材料試驗 19
3.2.1 鋼筋拉伸試驗 19
3.2.2 混凝土抗壓試驗 19
3.2.3 混凝土抗拉試驗 20
3.3 試體設計 21
3.3.1 單一澆鑄短梁 21
3.3.2 二次澆鑄短梁 21
3.4 試體製作 22
3.4.1 應變計黏貼流程 22
3.4.2 鋼筋籠製作 23
3.4.3 應變計收線 23
3.4.4 錨定T頭(T head) 24
3.4.5 模板製作 24
3.4.6 試體澆鑄 25
3.4.7 試體拆模與養護 27
3.5 實驗設備 27
3.5.1 施力系統 27
3.5.2 量測系統 29
3.6 實驗方法與步驟 30
3.7 實驗數據處理 31
3.7.1 理論標稱載重Pn 31
3.7.2 柱頭轉角造成之位移∆cb 32
3.7.3 試體真實位移∆b 32
3.7.4 梁在臨界斷面撓曲位移∆bf 33
3.7.5 梁腹矩形應力塊剪力和撓曲位移 34
3.7.6 量測降伏位移Δby 35
3.7.7 層間變位角DR與位移韌性比μ∆ 36
3.7.8 交接面剪應力理論 37
3.7.9 相對消能比 38
第四章 實驗結果 39
4.1 整體耐震行為 39
4.1.1 單一澆鑄短梁 40
4.1.2 HT1bj 二次澆鑄短梁 44
4.2 試體縱向主筋之應變 48
4.2.1 HT1b單一澆鑄試體 49
4.2.2 HT1bj二次澆鑄試體 49
4.3 版筋之應變 50
4.3.1 HT1b單一澆鑄試體 50
4.3.2 HT1bj試體 51
4.4 閉合箍筋之應變 52
4.4.1 HT1b單一澆鑄試體 53
4.4.2 HT1bj二次澆鑄試體 53
4.5 交接面滑移之觀察 54
4.5.1 HT1b 單一澆鑄試體 54
4.5.2 HT1bj 二次澆鑄試體 55
4.6 梁腹矩形應力塊 56
第五章 討論 59
5.1 交接面剪應力預測與實驗結果比較 59
5.1.1 HT1b單一澆鑄試體 59
5.1.2 HT1bj二次澆鑄試體 60
5.2 交接面剪應力容許值之探討 61
5.3 施工縫對New RC構件的影響 63
5.3.1 承載能力 63
5.3.2 整體消能行為 64
5.4 New RC構件與一般RC構件比較 64
5.4.1 裂縫出現時機 65
5.4.2 斜剪裂縫角度 66
5.4.3 裂縫寬 66
第六章 結論與建議 69
6.1 結論 69
6.2 建議 70
參考文獻 72
附錄A 各試體標稱強度評估計算 190
附錄B 極限狀態下交接面剪應力檢核步驟 196
附錄C 容許應力下交接面剪應力檢核步驟 201
附錄D 伸展長度檢核 207
附錄E Loov等人[7]實驗設置及數據 208參考文獻 [1] J. P. Moehle, J. D. Hooper, C. D. Lubke, “Seismic Design of Reinforced Concrete Special Moment Frames: A Guide for Practicing Engineers” National Institute of Standards and Technology, August 2008 .
[2] 鄭智仁,「預鑄施工梁與版間冷縫對T形斷面梁耐震行為之影響」,國立中央大學,碩士論文,民國一百零一年。
[3] ACI Committee 318, Building Code Requirement for Structural Concrete, ACI318-11 & Commentary, American Concrete Institute, 2011.
[4] 中國土木水利工程學會,混凝土工程設計規範與解說,土木401-100,2011。
[5] CSA Committee A23.3, Design of Concrete Structures for Building, Canadian Standards Association, Canada, 2004.
[6] NZS3101, Concrete Structures Standard, The design of Concrete Structures & Commentary on the Design of Concrete Structures, New Zealand Standard, 2006.
[7] R. E. Loov D. Phil., and A. K. Patnaik, “Horizontal Shear Strength of Composite Concrete Beams with a Rough Interface, ” PCI Journal, Vol.39, No.1, January-February, 1994, pp. 48-68.
[8] L. F. Kahn, and A. D. Mitchell, “Shear Friction Tests with High-Strength Concrete, ” ACI Structural Journal, Vol.99, No.S11, January-February, 2002, pp. 98-103.
[9] L. F. Kahn, and A. Slapkus, “Interface Shear in High Strength Composite T-beams, ” PCI Journal, Vol. 49, No. 4, July-August, 2004, pp. 102-110.
[10] M. A. Ali, R. N. White, “Enhanced Contact Model for Shear Friction of Normal and High-Strength Concrete.” Journal of the American Concrete Institute, May-June 1999, pp.348–361.
[11] M. R. Ehsani, J. K. Wight, “Effect of Transverse Beams and Slab on Behavior of Reinforced Concrete Beam-to-Column Connections.” Journal of the American Concrete Institute, March-April 1985, pp.188–195.
[12] I. K. Fang, C. S. Wang, K. L. Hong, “Cyclic Behavior of High-Strength Concrete Short Beams with Lower Amount of Flexural Reinforcement” Journal of the American Concrete Institute, January-February 1994, pp.10-18.
[13] K. K. Sasaki, T. Paret, J. C. Araiza, and P. Hals, “Failure of Concrete T-Beam and Box-Girder Highway Bridges Subjected to Cyclic Loading form Traffic” Engineering Structures 32, January, 2010, pp. 1838-1845.
[14] S. Kono, H. Tanaka, F. watanabe, “Interface Shear Transfer for High Strength Concrete and High Strength Shear Friction Reinforcement” American Society of Civil Engineers, 2003,pp.319-328.
[15] K. Wille, D. J. Kim, A. E. Naaman, “Strain-hardening UHP-FRC with low fiber contents” Materials and Structures, 2011, pp.583-598.
[16] ACI Committee 374, “Acceptance Criteria for Moment Frames Based on structural Testing and Commentary (ACI 374.1-05),” American Concrete Institute, Farmington Hills, MI, 2005, pp. 1-9.
[17] A.Walker, “Assessment of Material Strain Limits for Defining Different Forms of Plastic Hinge Region in Concrete Structures,” Master Thesis, University of Canterbury, Christchurch, New Zealand.
[18] 王昱升,「高拉力鋼筋混凝土T形斷面梁與版間介面冷縫對整體構件耐震行為影響之研究」,國立中央大學,碩士論文,民國一百零二年。
[19] 余成偉,「高強度鋼筋混凝土梁塑性鉸長度之探討」,國立中央大學,碩士論文,民國一百零二年。
[20] 柯舜文,「不同跨度之T形梁在反覆荷載下有效版寬研究」,國立中央大學,碩士論文,民國一百零二年。指導教授 王勇智(Yung-Chih Wang) 審核日期 2013-8-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare